
F CYLINDER Double Bearing Type

F CYLINDER Double Bearing Type

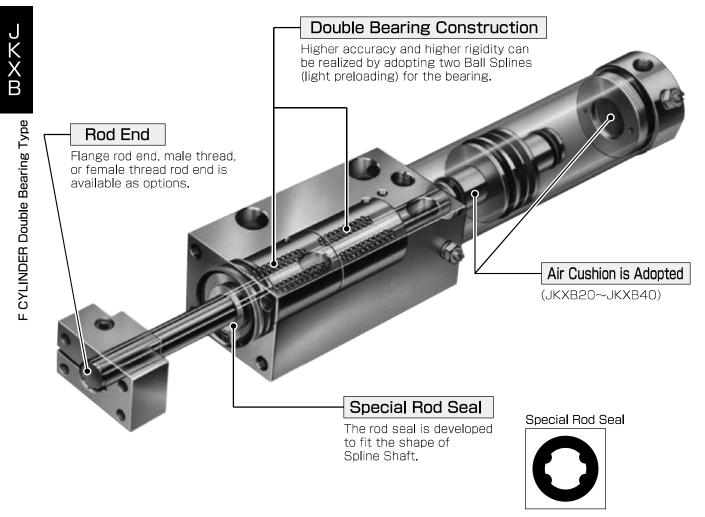
JKXB Series

Registration of Utility Model

INDEX★

Overview · · · · · · 906
Explanation, Example of Use · · · · · · · · · · · · · · 907
Model Code No. · · · · · · 908
Specifications, Guide to be used, Spare Parts Code \cdots 909
Product Mass, Theoretical Thrust ·····910
Structure and Principal Components $\cdots 911 \sim 913$
Main Body Installation · · · · · · · · · · · · · · · · · · ·
Mounting Interchangeability with JKX ·····915
Note for Safe Use, Allowable Moment · · · · · · · · 916, 917
Allowable Load Mass, Aloowable Lateral Loud and Rod Deflection \cdots 9 1 8, 9 1 S
Allowable Torque and Torsion Angle of Rod \cdots 920, 921
Bearing for Floating Mechanism, Note for Safe Use \cdots 922
Dimensions of Rod End with Bearing for Floating Mechanism \cdots 923
Dimensions924~939
Switch Installation, Standard Stroke · · · · · · 940
Custom Made · · · · · · 941

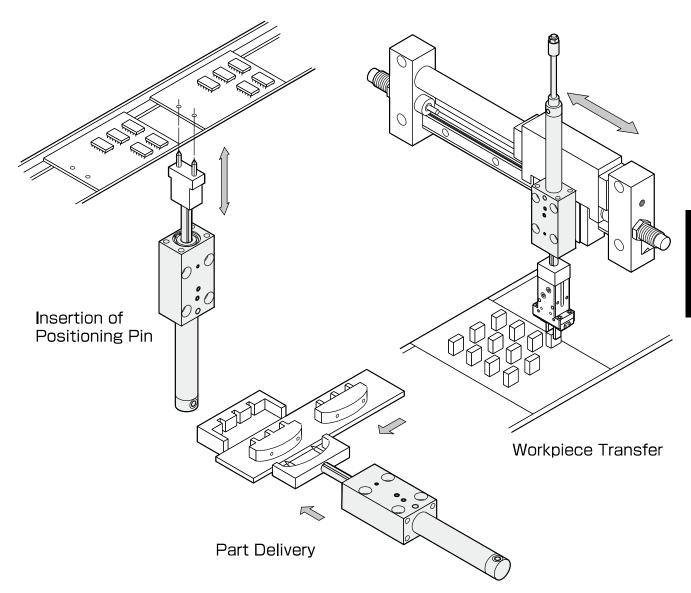
F CYLINDER Double Bearing Type


JKXB Series

Double Bearing Can Provide Almost 4 Times The Rigidity.

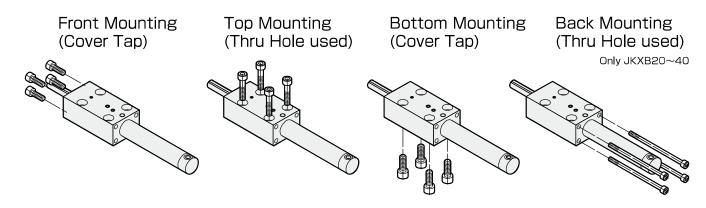
Ball Spline

High-accuracy Ball Spline is adopted.

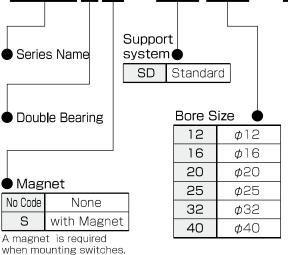


Summary of The F CYLINDER Double Bearing Type

The double bearing type F cylinder is newly added to the JKX series equipped with the high accuracy ball splines driven directly by a piston.


By placing two bearings (ball spline) in series, high accuracy and high rigidity cylinders can be realized despite long stroke and heavy load.

■ Application Examples: F CYLINDER Double Bearing Type


MAIN BODY INSTALLATION

(Bolt as shown in the figure are not supplied with products)

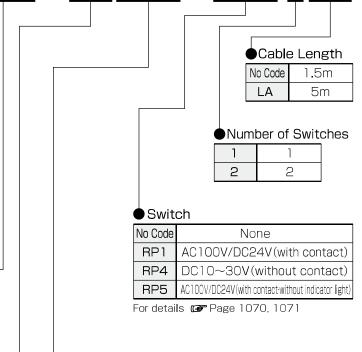
Model Code Example

Stroke •

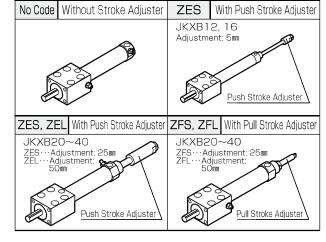
Standard Stroke

Maximum Stroke

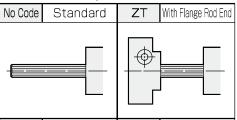
Maximum Stroke
100
100
550
650
650
700

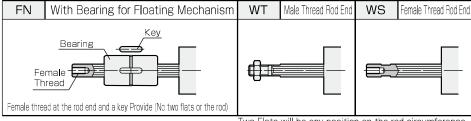

Minimum Stroke

Bore Size	JKXB	JKXBS
φ12	14	10
<i>ф</i> 16	10	10


As to the orders for shorter strokes than the above. please contact us separately.

Switch Mountable Minimum Stroke Unit: mm


Swite	ch Mounting Detail	Stroke
Wi	th one piece	10
With two	On a straight line	30
pieces	Not on a straight line	15
With three	On a straight line	50
pieces	Not on a straight line	40



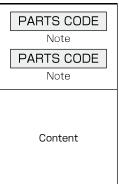
Stroke Adjuster

Rod End Shape

Two Flats will be any position on the rod circumference.

SPECIFICATIONS

Bore Size(mm)	φ12	φ16	φ20	φ25	φ32	φ40
Rod Size(mm)	ø 6	φ8	φ1O	φ13	φ13	φ16
Maximum Stroke(mm)	100	100	550	650	650	700
Piping Size	M5>	<0.8		Rc1/8		Rc1/4
Guide Mechanism			Ball S	Spline		
Type of Operation			Double	acting		
Fluid		Air				
Maximum Operating Pressure	0.7MPa 1.0MPa					
Minimum Operating Pressure	0.13MPa					
Minimum Operating Pressure (in case of optional ZES and ZEL)	0.18MPa					
Proof Pressure	1.05MPa 1.5MPa					
Operating Temperature	5~60°C					
Maximum Operating Speed	100~700mm/s					
Lubrication	Not required					
Cushioning	Rubber Cushion Air Cushion					

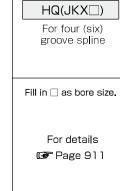

GUIDE TYPE(BALL SPLINE)

Model	Туре
JKXB12	THK LT6×2
JKXB16	THK LT8×2
JKXB20	THK LT10×2
JKXB25	THK LT13×2
JKXB32	THK LT13×2
JKXB40	THK LT16×2

Pre-load:Zero or slightly pre-loaded

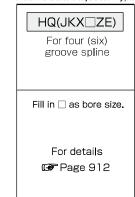
OPTIONAL PARTS CODES

Switch with Contact

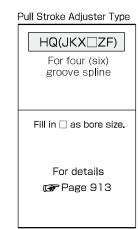

Flange Rod End

Switch without Contact

Repair Parts Kit Standard



Switch with Contact (without Indicator Light)



Push Stroke Adjuster Type

Switch Mounting Fixture

*Currently, the number of rod spline grooves has changed from 3 to 4 for all models other than JKX40, which has 6 grooves.

MASS

Standard Type

Unit: g

Model	Standard Mass	Additional Mass
JKXB12	185	0.4
JKXB16	226	0.7
JKXB20	465	1.1
JKXB25	665	1.5
JKXB32	745	1.8
JKXB40	1500	2.5

METHOD TO CALCULATE THE MASS

Ex. JKXBS-SD20-100-ZTZES-RP12

Standard Mass····· 610g
Additional Mass······1.8×100=180g
Flange Rod End····· 30g
Switch35×2=70g
610+180+30+70=890g

	<u> </u>	- '	,
Model	Standa	Additional	
Model	ZES	ZEL	Mass
JKXB12	206		0.5
JKXB16	242		0.9
JKXB20	610	665	1.8
JKXB25	835	915	2.4
JKXB32	935	1015	2.7
JKXB40	2030	2130	4.1

● Push Stroke Adjuster Type (ZES, ZEL) Unit: g ● Pull Stroke Adjuster Type (ZFS, ZFL) Unit: g

Model	Standard Mass		Additional
Model	ZFS	ZFL	Mass
JKXB12			
JKXB16			
JKXB20	510	520	1.1
JKXB25	715	725	1.5
JKXB32	800	810	1.8
JKXB40	1810	1830	2.5

Options

Unit: g

Model	With Bearing for Floating Mechanism (FN)	Flange Rod End (ZT)
JKXB12	24	15
JKXB16	30	17
JKXB20	72	30
JKXB25	92	50
JKXB32	92	50
JKXB40	250	85

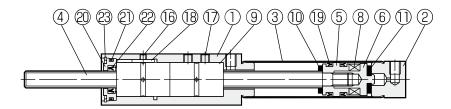
Switch

Unit: g

Switch Type	Mass
RP1, RP4, RP5	35
RP1LA, RP4LA, RP5LA	70

Mass of switch fixture is included.

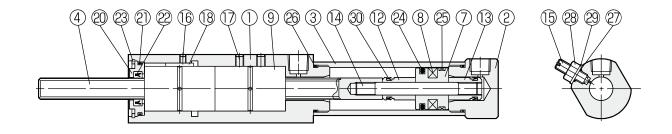
THEORETICAL THRUST


Unit: N

		Unit.N								
Bore Size	Working				Operati	ing Pressu	ire MPa			
(mm)	Direction	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
φ12	Push	23	34	45	57	68	79			
Ψ12	Pull	17	26	34	43	51	60			
4 16	Push	40	60	80	100	120	140			
<i>φ</i> 16	Pull	30	45	60	76	91	106			
400	Push	63	94	130	160	190	220	250	280	310
φ20	Pull	47	71	94	120	140	170	190	210	240
405	Push	98	150	200	250	300	340	390	440	490
φ25	Pull	72	110	140	180	220	250	290	320	360
420	Push	160	240	320	400	480	560	640	720	800
φ32	Pull	130	200	270	340	400	470	540	600	670
440	Push	250	380	500	630	750	880	1000	1100	1300
<i>φ</i> 40	Pull	210	320	420	530	630	740	840	950	1100

1MPa=10.2kgf/² 1N= 0.102kgf

STRUCTURE AND PRINCIPAL COMPONENTS '


JKXB12, 16 Standard

Disassembling is impossible.

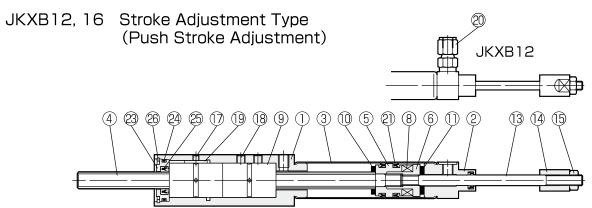
(The rod seal can be replaced.)

JKXB20, 25, 32, 40 Standard

PRINCIPAL COMPONENTS

No.	Name	Material	Remarks	No.	Name	Material	Remarks
1	Rod Cover	Aluminum Alloy	Alumite Treatment	10	Front Cushion Rubber	Urethane Rubber	JKXB12, 16
2	Head Cover	Aluminum Alloy	Alumite Treatment	11	Rear Cushion Rubber	Urethane Rubber	JKXB12, 16
3	Tube	Stainless Steel	JKX12, 16	12	Front Cushion Rubber	Aluminum Alloy	JKXB20~40
٥	rube	Aluminum Alloy	JKX20~40	13	Rear Cushion Rubber	Aluminum Alloy	JKXB20~40
4	Spline Rod	High Carbon Chrome Bearing Steel	Hard Chromium Plated	14	Piston Shaft	Stainless Steel	JKXB20~40
5	Piston A	Phosphor Bronze	JKXB12, 16	15	Needle	Steel	Nickel Plating
6	Piston B	Brass	JKXBS12, 16	16	Fixing Screw	Steel	Nickel Plating
7	Piston	Aluminum Alloy	JKXB20~40	17	Fixing Screw	Steel	Nickel Plating
8	Magnet	Resin Bound Magnet	Only with Magnet	18	Key	Steel	
9	Ball Spline	Steel, Resin,etc		19	Piston seal	NBR	JKXB12, 16

REPAIR PARTS

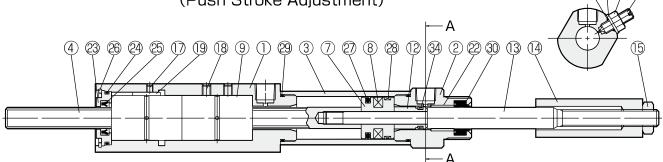

JKXB12, 16

No.	Name	Material	Qty	Remarks
20	Rod Seal Holder	Aluminum Alloy	1	Alumite Treatment
21	0-ring	NBR	1	
22	Spline Seal	Urethane Rubber	1	
23	Circlip	Steel	1	Nickel Plating

JKXB20, 25, 32, 40

No.	Name	Material	Qty	Remarks
20	Rod Seal Holder	Aluminum Alloy	1	A l umite Treatment
21	O-ring	NBR	1	
22	Spline Seal	Urethane Rubber	1	
23	Circlip	Steel	1	Nickel Plating
24	Piston Seal	NBR	1	
25	Wear Ring	Synthetic Resin	1	
26	O-ring	NBR	2	
27	O-ring	NBR	2	
28	Nut	Steel	2	Nickel Plating
29	Plain Washer	Steel	2	Nickel Plating
30	Cushion Seal	NBR	2	

STRUCTURE AND PRINCIPAL COMPONENTS



Disassembling is impossible.

Section A-A

(The rod seal can be replaced.)

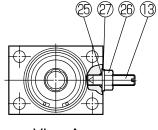
JKXB20, 25, 32, 40 Stroke Adjustment Type (Push Stroke Adjustment)

PRINCIPAL COMPONENTS

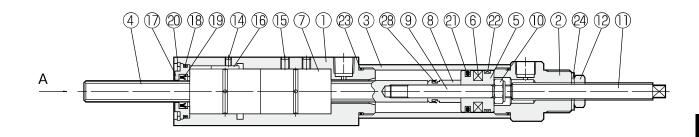
No.	Name	Materia l	Remarks	No.	Name	Material	Remarks
1	Rod Cover	Aluminum Alloy	Alumite Treatment	12	Cushion Collar	Aluminum Alloy	JKXB20~40
2	Head Cover	Aluminum Alloy		13	Push Stroke Adjustment Rod	Stainless Steel	Hard Chromium Plated
3	Tube	Stainless Steel	JKXB12, 16	10	FUSIT OTTUKE AUJUSTITIETIT NUU	Carbon Steel	Hard Chromium Plated
٥	rube	Aluminum Alloy	JKXB20~40	14	Stopper for Stroke Adjustment	Steel	Nickel Plating
4	Spline Rod	High Carbon Chrome Bearing Steel	Hard Chromium Plated	15	Nut	Steel	Nickel Plating
5	Piston A	Phosphor Bronze	JKXB12, 16	16	Needle	Steel	Nickel Plating
6	Piston B	Brass	JKXBS12, 16	17	Fixing Bolt	Steel	Nickel Plating
7	Piston	Aluminum Alloy	JKXB20~40	18	Fixing Bolt	Steel	Nickel Plating
8	Magnet	Resin Bound Magnet	Only with Magnet	19	Key	Steel	
9	Ball Spline	Steel, Resin,etc		20	Universal Joints	Copper Alloy	Nickel Plating
10	Front Cushion Rubber	Urethane Rubber	JKXB12, 16	21	Piston seal	NBR	JKXB12, 16
11	Rear Cushion Rubber	Urethane Rubber	JKXB12, 16	22	Bush	Steel、PTFE	JKXB20~40

REPAIR PARTS

JKXB12, 16


No.	Name	Material	Qty	Remarks
23	Rod Seal Holder	Aluminum Alloy	1	Alumite Treatment
24	O-ring	NBR	1	
25	Spline Seal	Urethane Rubber	1	
26	Circlip	Steel	1	Nickel Plating

JKXB20, 25, 32, 40


	BE0, E0, GE,	_		
No.	Name	Material	Qty	Remarks
23	Rod Seal Holder	Aluminum Alloy	1	Alumite Treatment
24	O-ring	NBR	1	
25	Spline Seal	Urethane Rubber	1	
26	Circlip	Steel	1	Nickel Plating
27	Piston Seal	NBR	1	
28	Wear Ring	Synthetic Resin	1	
29	O-ring	NBR	2	
30	Rod Seal	NBR	1	
31	O-ring	NBR	1	
32	Nut	Steel	1	Nickel Plating
33	Plain Washer	Steel	1	Nickel Plating
34	Cushion Seal	NBR	1	

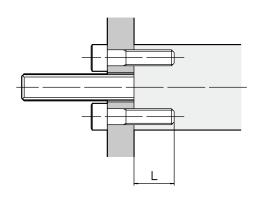
STRUCTURE AND PRINCIPAL COMPONENTS

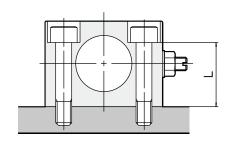
JKXB20, 25, 32, 40 Stroke Adjustment Type(Pull Stroke Adjustment)

View A

PRINCIPAL COMPONENTS

No.	Name	Material	Remarks	No.	Name	Material	Remarks
1	Rod Cover	Aluminum Alloy	Alumite Treatment	9	Piston Shaft	Stainless Steel	
2	Head Cover	Aluminum Alloy	Alumite Treatment	10	U-nut	Steel	Nickel Plating
3	Tube	Aluminum Alloy	Hard Alumite	11	Pull Stroke Adjustment Rod	Steel	Nickel Plating
4	Spline Rod	High Carbon Chrome Bearing Stee	Hard Chromium Plated	12	Nut	Steel	Nickel Plating
5	Piston	Aluminum Alloy		13	Needle	Steel	Nickel Plating
6	Magnet	Resin Bound Magnet	Only with Magnet	14	Fixing Bolt	Steel	Nickel Plating
7	Ball Spline			15	Fixing Bolt	Steel	Nickel Plating
8	Cushion Collar	Aluminum Alloy		16	Key	Steel	

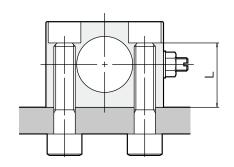

REPAIR PARTS

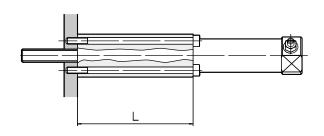

JKXB20, 25, 32, 40

No.	Name	Material	Qty	Remarks
17	Rod Seal Holder	Aluminum Alloy	1	Alumite Treatment
18	O-ring	NBR	1	
19	Spline Seal	Urethane Rubber	1	
20	Circlip	Steel	1	Nickel Plating
21	Piston Seal	NBR	1	
22	Wear Ring	Synthetic Resin	1	
23	O-ring	NBR	2	
24	Seal Washer	NBR, Steel	1	
25	O-ring	NBR	1	
26	Nut	Steel	1	Nickel Plating
27	Plain Washer	Steel	1	Nickel Plating
28	Cushion Seal	NBR	1	

Front mounting(Cover Tap)

Top mounting(Thru Hole used)

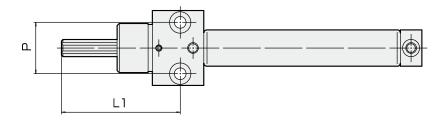



Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m
JKXB12	M5×0.8	9	5.1
JKXB16	M5×0.8	9	5.1
JKXB20	M6×1	12	8.6
JKXB25	M8×1.25	16	22
JKXB32	M8×1.25	16	22
JKXB40	M10×1.5	20	43

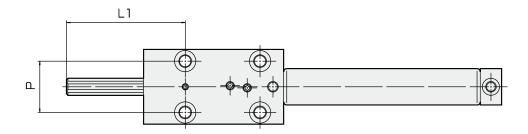
Model	Bolt Size	Thru Hole Length L(mm)	Fastening Torque N·m
JKXB12	M5	15.9	5.1
JKXB16	M5	17.9	5.1
JKXB20	M6	24	8.6
JKXB25	M8	26	22
JKXB32	M8	29	22
JKXB40	M10	39	43

Bottom mounting(Cover Tap)

Back mounting(Thru Hole used)

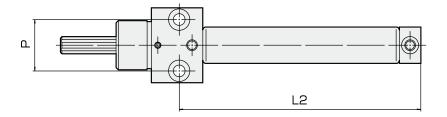

Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m
JKXB12	M6×1	15.9	8.6
JKXB16	M6×1	17.9	8.6
JKXB20	M8×1.25	24	22
JKXB25	M10×1.5	26	43
JKXB32	M10×1.5	29	43
JKXB40	M12×1.75	39	75

Model	Bolt Size	Thru Hole Length L(mm)	Fastening Torque N·m
JKXB12			
JKXB16			
JKXB20	M5	86.5	5.1
JKXB25	M6	93	8.6
JKXB32	M6	93	8.6
JKXB40	M8	127	22

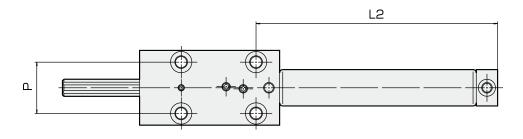

MOUNTING INTERCHANGEABILITY WITH JKX CYLINDER (SINGLE BEARING TYPE) -

All the products are the same as JKX for the dimension from the rod end to the rod mounting hole on the rod cover (mark L1 in the figure) and the mounting hole pitch (mark P in the figure). Here, the dimension from the mounting hole to the head cover end is different.

JKX Series



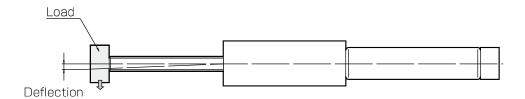
JKXB Series



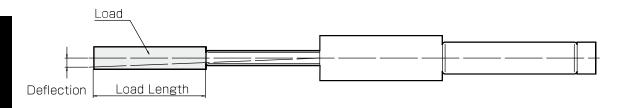
All the products are the same as JKX for the dimension from the head cover end to the rod cover mounting hole (mark L2 in the figure) and the mounting hole pitch (mark P in the figure). Here, the dimension from the mounting hole to the rod end is different.

JKX Series

JKXB Series


MATTERS TO BE NOTED FOR DESGINING

⚠ Caution


Rod End Deflection in case of Horizontal Use

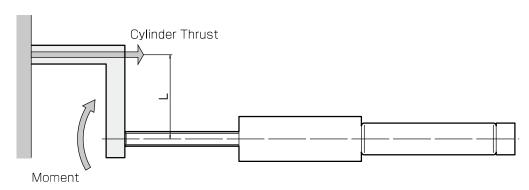
Deflection is generated due to the load mounted at the rod end.

See the graphs on pages 918 for allowable load mass and deflection.

When the load length is long, the deflection at the load end is larger than that at the rod end.

In this case, read the deflection from the graph taking the length of the load length plus cylinder stroke as cylinder stroke.

Example: Cylinder Stroke · · · · · · · 100mm Load Length·····50mm


Assuming 100+50=150mm as cylinder stroke,

read the deflection at the point (100+50)mm of cylinder stroke from the graph.

Moment Generated by Cylinder Thrust in case of Offset Contact

When a load/work is put into contact at an offset point from the rod as shown, a large moment is generated due to cylinder thrust.

Check the table of allowable moment.

Moment=Cylinder thrust x L(offset distance)

When an external force (lateral load) acts on the rod

In case where an external force (lateral load) acts temporarily on the rod end when the cylinder stopped, read deflection from the broken lines on the graphs

Rod Deflection

In case where a load is light, but the stroke is long, or a load at the rod end is large, the rod deflection may sometimes become unexpectedly large.

Select a model referring to the graphs of deflection.

Rod Vibration

In case where stroke is long, or load mass at the rod end is large, rod vibration may be generated at the cylinder push end.

Then, decrease the speed or select a model with a size larger dia. rod.

Also, when the rigidity of the base for mounting the cylinder is not sufficient, enhance the rigidity of the base.

Mounting of Load

When mounting a load by using a male or female thread at the rod end, set a spanner on the across flats of the rod to prevent the tightening torque from being applied to the bearing.

Cushion Needle Adjustment

The air cushion provided for JKX 20 to 40 is adjusted before shipping but can be adjusted by turning the needle according to the condition of use.

After adjustment, be sure to secure by tightening the lock nut.

If the cushion needle is opened too much, the air cushion does not function and excessive impact may be applied to the piston at the stroke end, causing damage or failure.

Rolling Feel in Bearing

The bearing (ball spline) of this product is slightly preloaded. Accordingly, when the rod is moved by hand, rolling of balls inside the bearing may cause slight feel of operation discontinuity or difference in the rolling resistance between products. This is due to preload of the bearing and does not affect the performance.

Stroke Adjustment of Push-out Adjustment Types (ZES and ZEL)

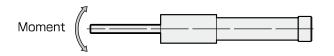
When adjusting the stroke, loosen the lock nut and turn the stopper for stroke adjustment.

When loosening the lock nut, set a spanner on the across flats of both the lock nut and the stopper for stroke adjustment.

Turning the stopper for stroke adjustment without loosening the lock nut causes the torque to be applied to the push-out adjustment rod as well, which may cause loosening of the connection between the rod and the piston, leading to failure.

After stroke adjustment, lock by setting a spanner on the across flats of both the lock nut and the stopper for stroke adjustment.

Use a spanner of an appropriate size.


Use of a monkey or pipe wrench may hinder correct adjustment, causing failure.

ALLOWABLE MOMENT

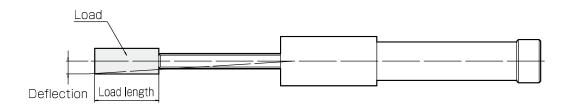
In case where a moment load is applied to the rod end

In case where the cylinder is operated under constant moment

Model	Allowable Moment N·m
JKXB12	1.2
JKXB16	2.6
JKXB20	5.2
JKXB25	6.3
JKXB32	6.3
JKXB40	16

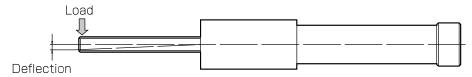
In case where a moment is applied temporarily while the cylinder stopped

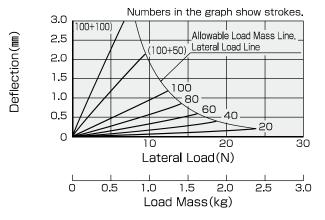
mode more a memoritie applied temperatily mile and eyimael eteppe		
Model	Allowable Moment N∙m	
JKXB12	1.4	
JKXB16	3.3	
JKXB20	6.5	
JKXB25	15	
JKXB32	15	
JKXB40	27	


1N·m=0.102kgf·m

ALLOWABLE LOAD MASS, ALLOWABLE LATERAL LOAD AND ROD DEFLECTION —

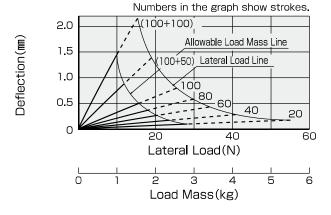
●Load Mass and Rod Deflection


In case of horizontal usage of the cylinder, deflection is generated in the rod due to the load mounted at the rod end. The relation between allowable load mass and deflection is shown in the graphs below. Applied load mass shall be within the range indicated by each solid line correspondent to each stroke length.



Lateral Load Rod Deflection

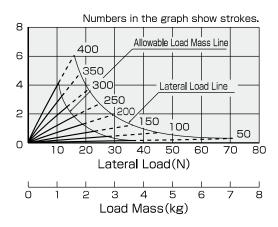
Under the condition that the cylinder is stopped the relation between deflection due to an external force (lateral load) acting temporarily on the rod and allowable load mass is shown in the graphs below. Applied lateral load shall be smaller than the value indicated by each broken line correspondent to each stroke length. If an external force acts on constantly, see the values of allowable load mass in the graphs.


JKXB12

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load (N)
20	2.4	24
40	1.9	19
60	1.6	16
80	1.4	14
100	1.2	12
(100+50)	0.96	9.6
(100+100)	0.78	7.8

Quotation () indicates (Stroke + Load Length)

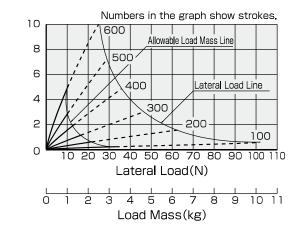
JKXB16



Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load (N)
20	3.0	55
40	2 <u>.</u> 5	43
60	2.1	35
80	1.8	29
100	1.6	25
(100+50)	1.2	19
(100+100)	1.0	15

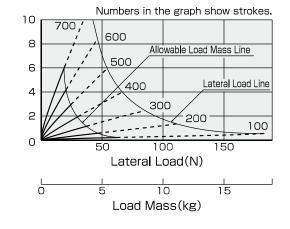
Quotation () indicates (Stroke + Load Length)

JKXB20


Deflection(mm)

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load (N)
50	4.0	71
100	2.9	48
150	2.3	36
200	1.9	29
250	1.6	24
300	1.4	21
350	1.2	18
400	1.1	16

JKXB25 JKXB32


Deflection(mm)

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load
100	3.3	100
200	2.2	64
300	1.6	46
400	1.3	36
500	1.1	30
600	0.92	25

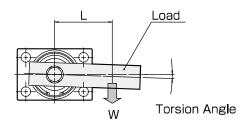
JKXB40

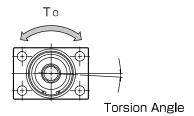
Deflection(mm)

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load
100	7.3	180
200	5.0	110
300	3.8	84
400	3.0	66
500	2.5	55
600	2.2	46
700	1.9	40

ALLOWABLE TORQUE AND TORSION ANGLE OF ROD

Torsion angle at the rod end when the rod is pushed out

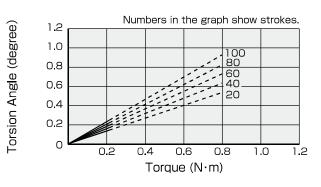

●In case where the cylinder is operated under constant torque (dynamic allowable torque)


A torsional moment (torque) is generated when a load in eccentric condition is mounted at the rod end as shown below.

When the cylinder is operated in this condition, the torque shall be smaller than the value indicated by each solid line in the graphs below.

•when a torque is applied temporarily while the cylinder stopped (static allowable torque)

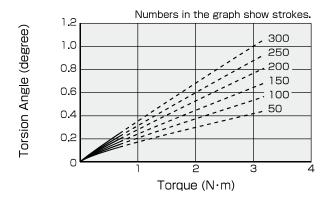
When a torque (To) is applied temporarily to the rod from outside while the cylinder stopped, the torque shall be smaller than the value indicated by each broken line in the graphs below.



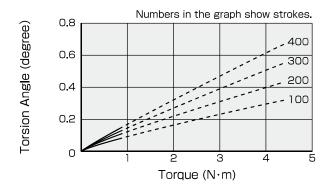
 $T=L\times W$


- T: Torsional moment
- L: Distance between the rod center and the center of gravity of a load
- W: Load mass

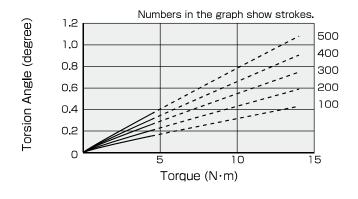
JKXB12


Dynamic Allowable Torque	Static Allowable Torque
0.20N·m	0.80N·m

JKXB16


Dynamic Allowable Torque	Static Allowable Torque
0.41N·m	1.2N·m

JKXB20


ynamic Allowable Torque	Static Allowable Torque
0.64N·m	3.2N·m

JKXB25 JKXB32

Dynamic Allowable Torque	Static Allowable Torque
0.88N·m	4.4N·m

JKXB40

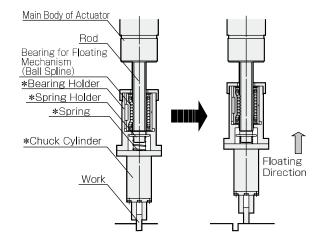
Dynamic Allowable Torque	Static Allowable Torque
4.3N·m	13.7N·m

BEARING FOR FLOATING MECHANISM (option code FN)

Prevention of damage when work installation fails

In case where work installation fails due to incomplete location, defective parts, etc. and the work is bumped, the floating mechanism will prevent the work from damage by absorbing the shock.

Softening of impact force at work installation


In case where an impact force due to actuator velocity may cause breakage of work or defective assembling at work installation. the floating mechanism will prevent the work from such damage by softening the impact force and help to achieve smooth work installation and press fit.

•Work installation at different levels

In case where works are installed at the positions of different levels. only one actuator can perform the operation by setting floating stroke by level difference in advance.

 The bearing for floating mechanism incorporates the high precision and high, rigidity ball spline.

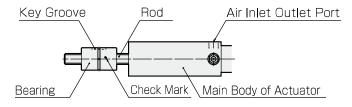
Construction and Application Example

●As for the parts (parts marked * in the figure above) other than the bearing for floating mechanism, it is required to design and produce the construction and parts fitting with the machine at your side.

MATTERS TO BE NOTED FOR DESIGNING

∧ Caution

1) Specific resistance of Bearing


The bearing for floating mechanism has the specific resistance respectively. Pay attention to the setting load value of the spring. (The spring force shall be determined from a viewpoint of the mechanism as a whole)

Unit: N

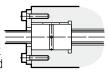
Model	Specific Resistance	Model	Specific Resistance
JKXB12	2.5	JKXB25	4
JKXB16	3	JKXB32	4
JKXB20	3.5	JKXB40	5

2 Direction of Bearing key groove and check mark

The check mark means the digit indicated in the optional place on the outside of the bearing. The digit are optional and mean nothing. When the bearing is mounted to the rod, insert straight so that the key groove of the bearing locates at the air inlet port side of actuator and the check mark at the body side of actuator. If it is inserted forcibly, the balls inside the bearing may come off.

3 Tolerance of the housing inside dia. for the bearing

Generally, the tolerance between the bearing for floating mechanism and the housing shall be by transition fit (J6). In case where accuracy is not so required, it shall be by loose fit (H7).


Tolerance of Housing	General Service Conditions	J6
Inside Dia.	Accuracy is not required	H7

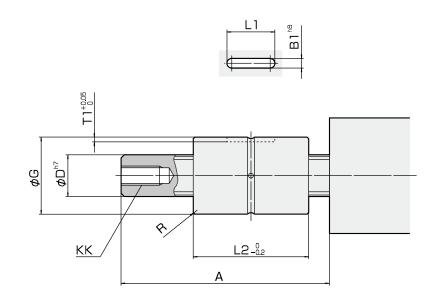
(4) Combination of the bearing and the rod

The bearing for floating mechanism and the rod are combinedly supplied. If other bearing, which is ordered additionally, attached to other actuator (including the part of the same specification), or purchased from somewhere afterward, is mounted to the rod, this may cause malfunction or poor accuracy. Be sure to use bearing attached to the actuator. The check mark (See clause 2 of this note.) on the bearing has nothing to do with the combination with rod. Even if the check mark on the bearing is the same, the combination of the bearing and the rod is another matter.

5 Mounting of the bearing

The right figure shows a mounting example of the bearing for floating mechanism. Fixing strength in the axial direction is not so required, but only driving fit is not enought to hold and another measures shall be taken.

6 Insertion of the bearing


When the bearing for floating mechanism is mounted, use a jig and not to tilt the cylinder to be parallel against the rod and insert carefully.

			σ ρ
Model	di	D	
JKXB12	φ 5 . 0	φ13.5	
JKXB16	φ 7 . 0	φ15.5	
JKXB20	φ 8 . 5	φ20.5	
JKXB25, 32	φ11 . O	φ23.5	
JKXB32	φ14.5	φ30 . 5	
	_		

(7) Actual stroke of the actuator

The length of actuator stroke minus floating stroke is the stroke by which the work actually shifts. Be careful to select stroke.

DIMENSIONS OF ROD END WITH BEARING FOR FIOATING MECHANISM(Option code FN)

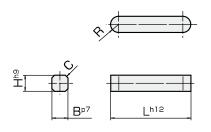
Female Thread Rod End(KK) Fastening Torque

Model	Fastening Torque
JKX12	1.1
JKX16	1.7
JKX20	4.8
JKX25	6.6
JKX32	6.6
JKX40	20

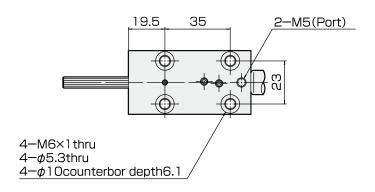
Bearing Mass

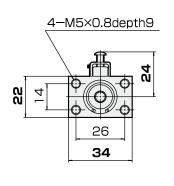
Unit: g

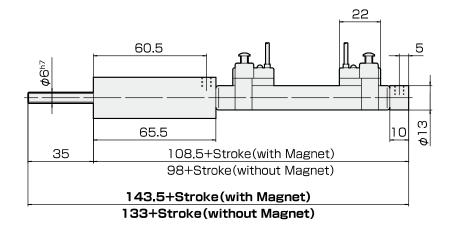
	01110.6
Model	Mass
JKXB12	17
JKXB16	18
JKXB20	50
JKXB25	55
JKXB32	55
JKXB40	165


Unit: mm

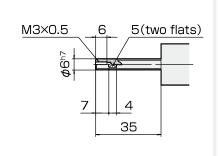
Model	Α	В1		G	KK	L1	L2	R	Tl
JKXB12	50	2.5	φ 6	φ14 ⁰ _{0.011}	M3×0.5 depth 6	10.5	25	0.5	1.2
JKXB16	50	2.5	φ8	φ16 ⁰ .011	M4×0.7 depth 8	10.5	25	0.5	1.2
JKXB20	60	3	φ10	φ21 ⁰ 0013	M5×0.8 depth10	13	33	0.5	1.5
JKXB25	65	3	φ13	Ф24 0013	M6×1 depth12	15	36	0.5	1.5
JKXB32	65	3	φ13	φ24 ⁰ _{0.013}	M6×1 depth12	15	36	0.5	1.5
JKXB40	85	3.5	φ16	φ31 ⁰ _{0.013}	M8×1.25depth13	17.5	50	0.5	2


Note 1. The rod projection length (mark A in the figure) is longer than the standard type. Pay attention to the overall length of the cylinder. Note 2. JKX40 is different from the above figure for the groove shape of the rod spline. See pages 854~869 for other detailed dimensions of the entire product.

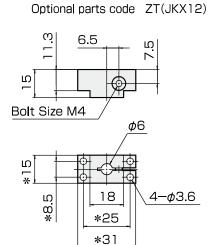

Note 3. A bolt and a washer are attached at the female thread rod end (mark KK in the figure) to prevent the bearing from coming off when delivered. They shall be removed when the cylinder is used. (Adhesive is not used.)


DIMENSIONS of KEY (A KEY IS ATTACHED TO THE PRODUCT.)

					Unit: mm
Model	В	С	Н	L	R
JKXB12	2.5	0.5	2.5	10.5	1.25
JKXB16	2.5	0.5	2.5	10.5	1.25
JKXB20	3	0.5	3	13	1.5
JKXB25	3	0.5	3	15	1.5
JKXB32	3	0.5	3	15	1.5
JKXB40	3.5	0.5	3.5	17.5	1.75

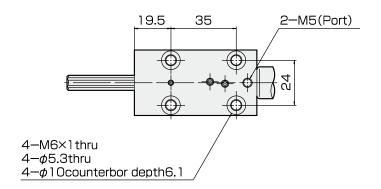


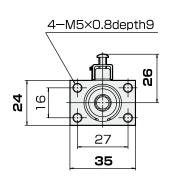
Note: Fixing screw which is to fix the key of bearing jumps out 0.3mm on the port surface of rod cover.

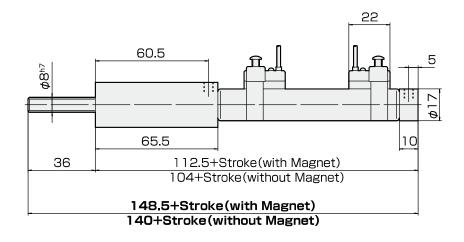

Male Thread Rod End(WT)

3.2 5(two flats) M5×0.8 9 10.5 4 35

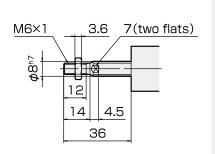
Female Thread Rod End(WS)

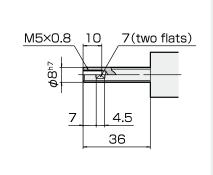

Flange Rod End(ZT)



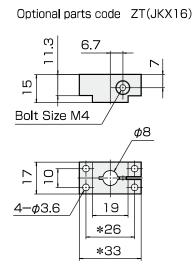

Note: Pay attention that the dimension marked * is diferent from previous type flange rod end ZS.

DIMENSIONS(mm) JKXB16 STANDARD TYPE

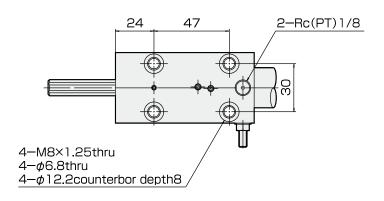


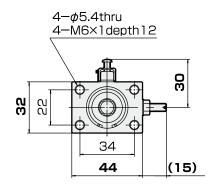


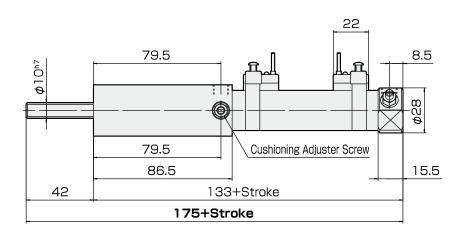
Note: Fixing screw which is to fix the key of bearing jumps out 0.3mm on the port surface of rod cover.


Male Thread Rod End(WT)

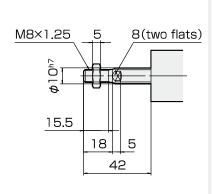
Female Thread Rod End(WS)

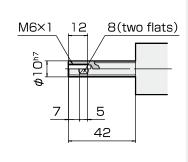



Flange Rod End(ZT)

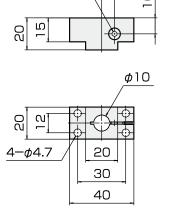


Note: Pay attention that the dimension marked * is different from previous type flange rod end ZS.

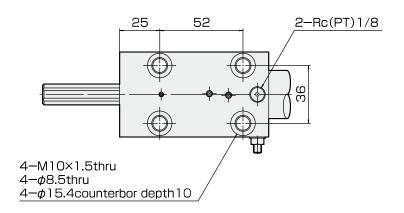


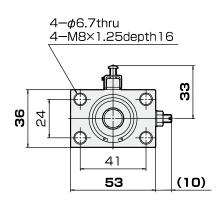


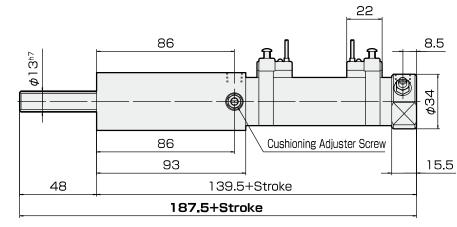
Male Thread Rod End(WT)


Female Thread Rod End(WS)

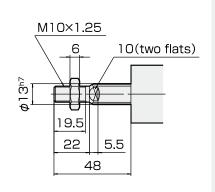
Flange Rod End(ZT)

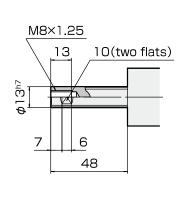

Bolt Size M4

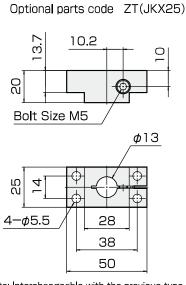

Optional parts code ZT(JKX20)

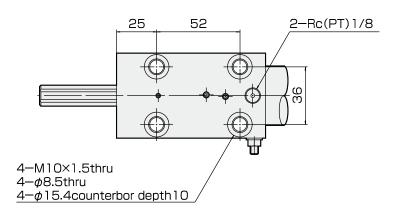


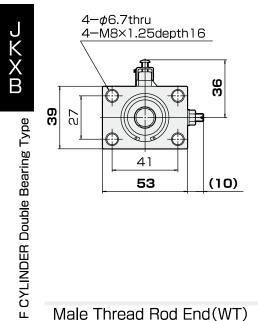
DIMENSIONS (mm) JKXB25 STANDARD TYPE

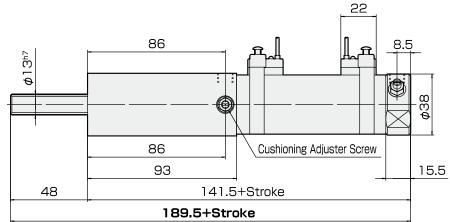


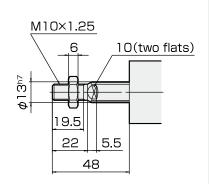


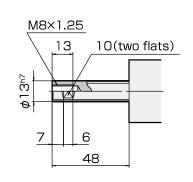

Male Thread Rod End(WT)

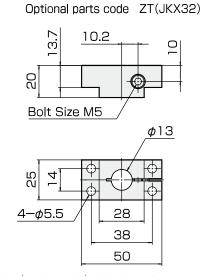

Female Thread Rod End(WS)



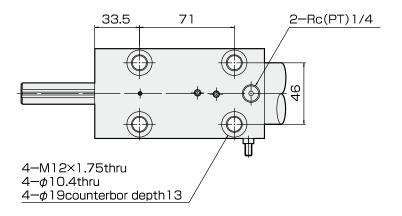

Flange Rod End(ZT)

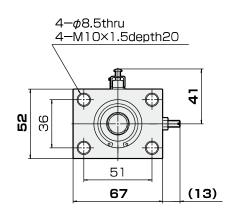


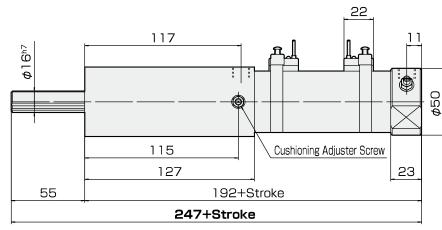



Male Thread Rod End(WT)

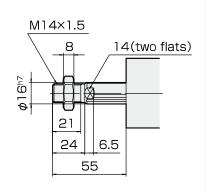
Female Thread Rod End(WS)

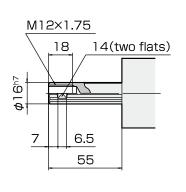


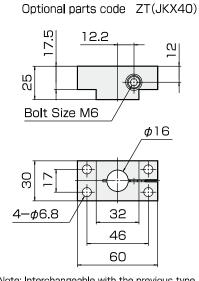

Flange Rod End(ZT)

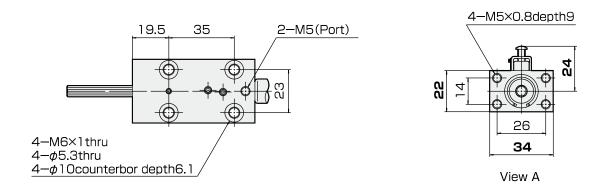


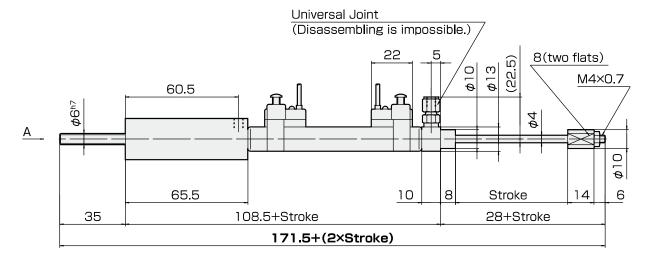
DIMENSIONS (mm) JKXB40 STANDARD TYPE





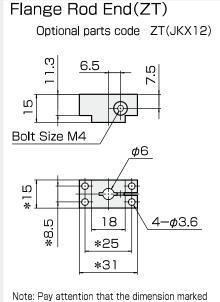

Male Thread Rod End(WT)


Female Thread Rod End(WS)



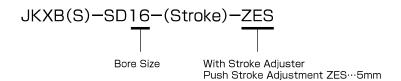
Flange Rod End(ZT)

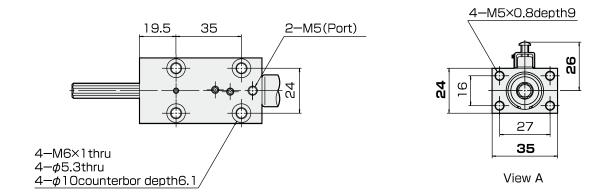
JKXB(S)-SD12-(Stroke)-ZES Bore Size With Stroke Adjuster Push Stroke Adjustment ZES...5mm

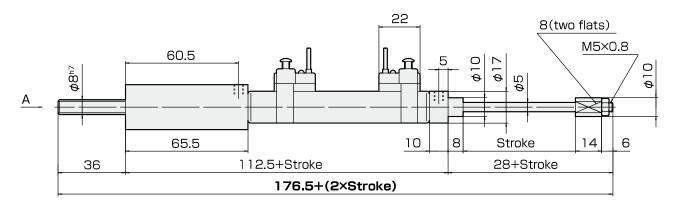

Note: In case of the stroke adjuster type, overall length of the cylinder is common to both with magnets (JKXBS) and without magnets (JKXB). Fixing screw which is to fix the key of bearing jumps out 0.3mm on the port surface of rod cover.

Female Thread Rod End(WS)

3.2 5(two flats) M5×0.8 9 4 35

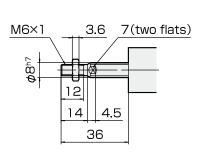

Male Thread Rod End(WT)

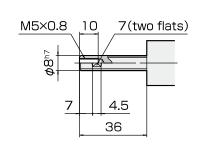

M3×0.5 6 5(two flats) 7 4 35



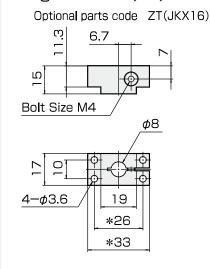
Note: Pay attention that the dimension marked * is diferent from previous type flange rod end ZS.

DIMENSIONS (mm) JKXB16 WITH STROKE ADJUSTER TYPE (PUSH STROKE ADJUSTMENT)

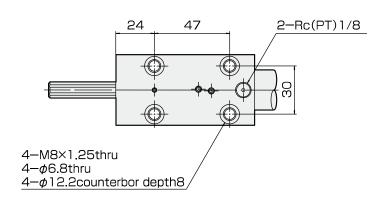


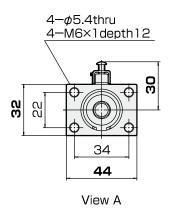


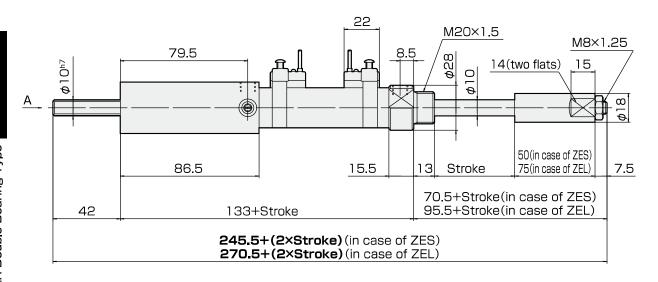
Note: In case of the stroke adjuster type, overall length of the cylinder is common to both with magnets (JKXBS) and without magnets (JKXB). Fixing screw which is to fix the key of bearing jumps out 0.3mm on the port surface of rod cover.


Male Thread Rod End(WT)

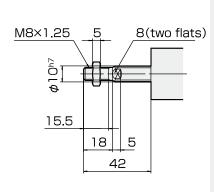
Female Thread Rod End(WS)

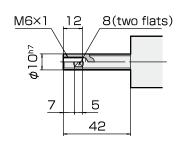

Flange Rod End(ZT)




Note: Pay attention that the dimension marked * is diferent from previous type flange rod end ZS.

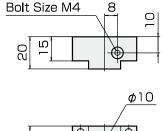
With Stroke Adjuster
Pull Stroke Adjustment ZFS…25mm
ZFL…50mm

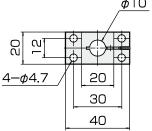




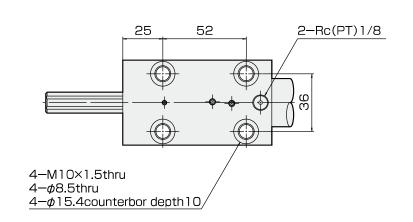
Air cushioning is available only at rod pull side.

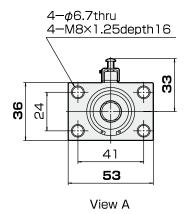
Male Thread Rod End(WT)

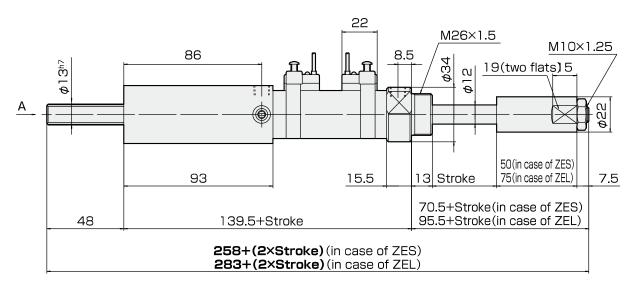



Female Thread Rod End(WS)

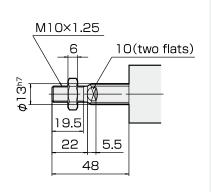
Flange Rod End(ZT)

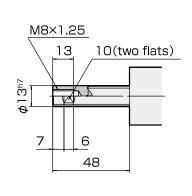

Optional parts code ZT(JKX20)



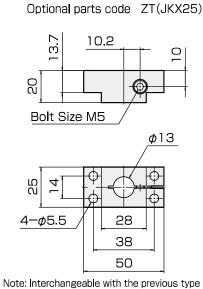


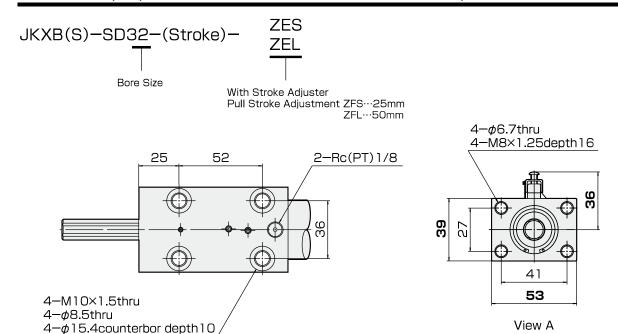
DIMENSIONS (mm) JKXB25 WITH STROKE ADJUSTER TYPE (PUSH STROKE ADJUSTMENT)

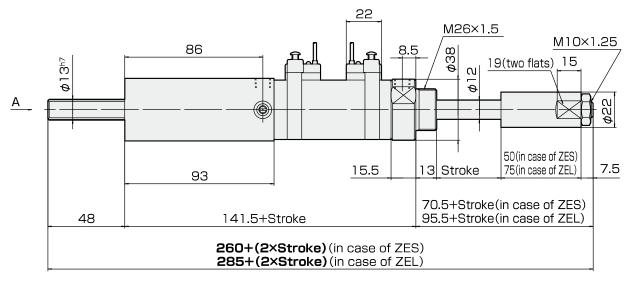




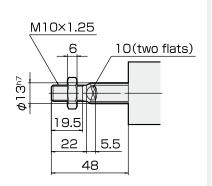
Air cushioning is available only at rod pull side.

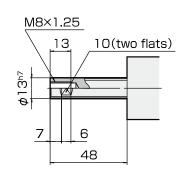

Male Thread Rod End(WT)


Female Thread Rod End(WS)

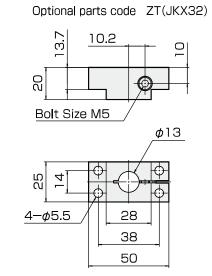


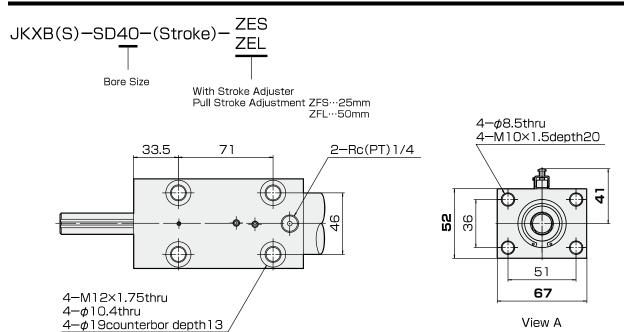
Flange Rod End(ZT)

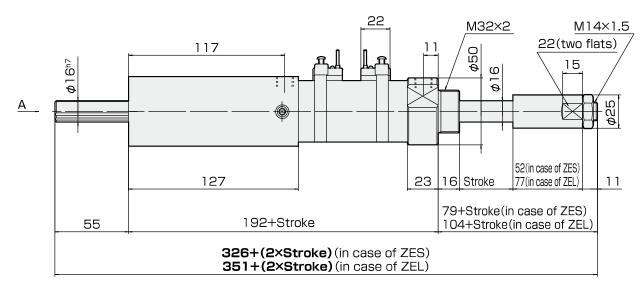

flange rod end ZS.



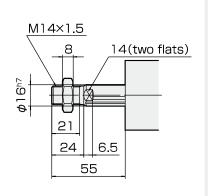
Air cushioning is available only at rod pull side.

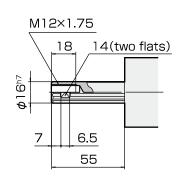



Female Thread Rod End(WS)

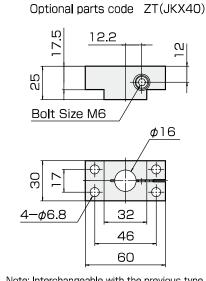


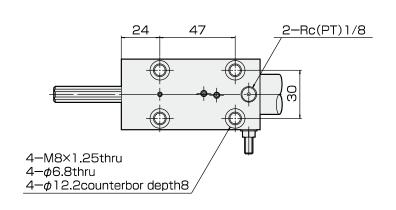
Flange Rod End(ZT)

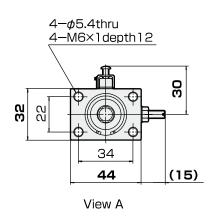

DIMENSIONS (mm) JKXB40 WITH STROKE ADJUSTER TYPE (PUSH STROKE ADJUSTMENT)

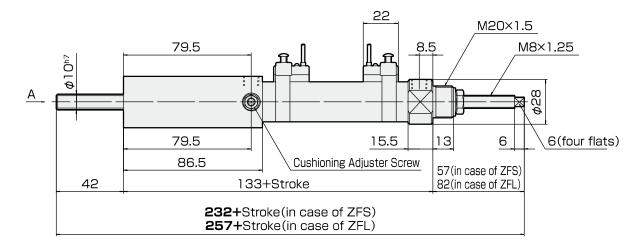


Air cushioning is available only at rod pull side.

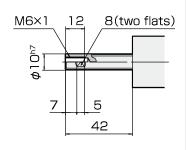



Female Thread Rod End(WS)



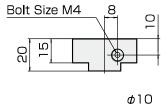

Flange Rod End(ZT)

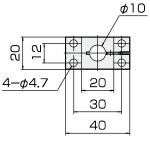
Pull Stroke Adjustment ZFS...25mm ZFL...50mm

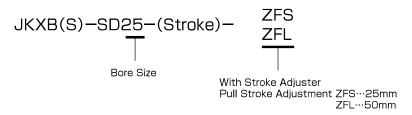


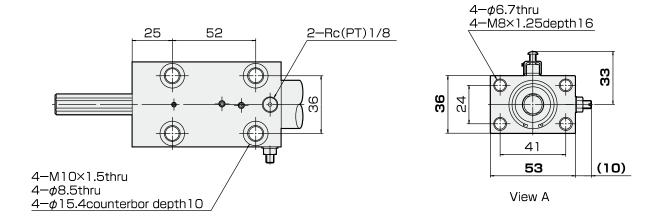
Air cushioning is available only at rod pull side.

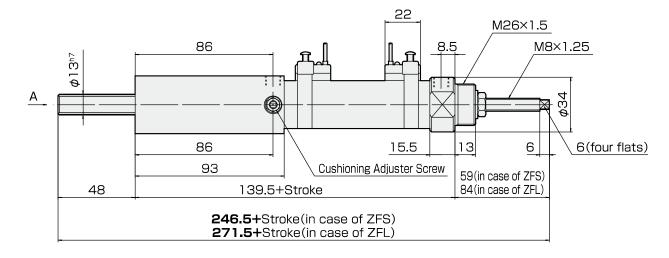
Male Thread Rod End(WT)


M8×1.25 5 8(two flats)

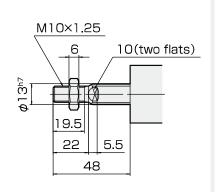

Female Thread Rod End(WS)

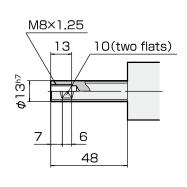

Flange Rod End(ZT)


Optional parts code ZT(JKX20)

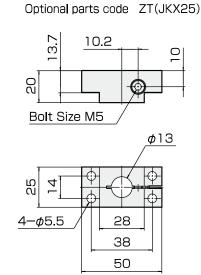


DIMENSIONS (mm) JKXB25 WITH STROKE ADJUSTER TYPE (PULL STROKE ADJUSTMENT)

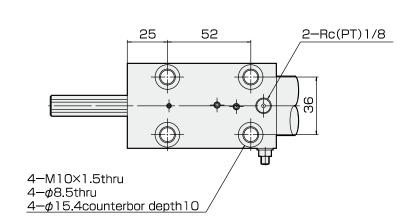


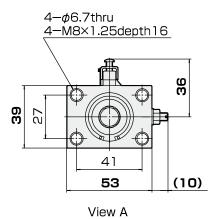


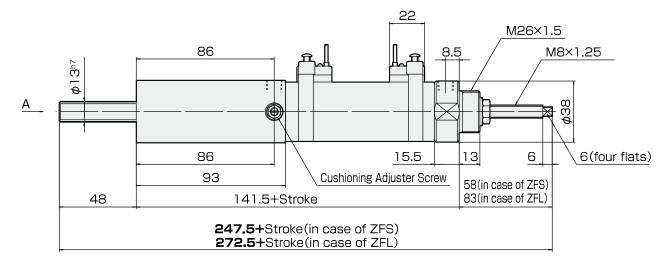
Air cushioning is available only at rod pull side.


Male Thread Rod End(WT)

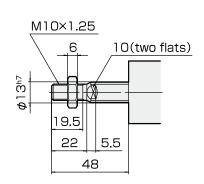
Female Thread Rod End(WS)

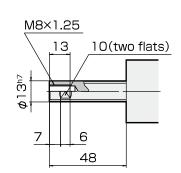

Flange Rod End(ZT)



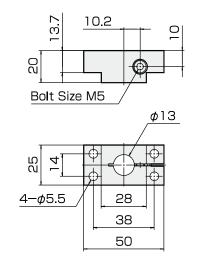

Note: Interchangeable with the previous type flange rod end ZS.

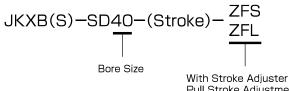
937

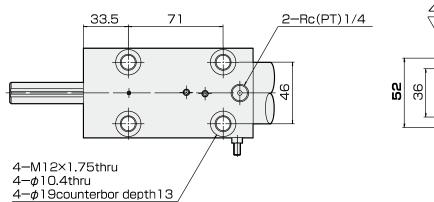


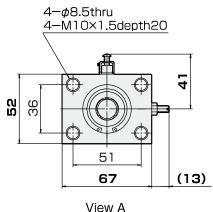

Air cushioning is available only at rod pull side.

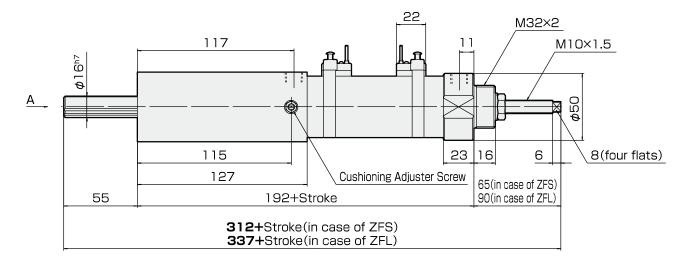
Optional parts code ZT(JKX32)


Male Thread Rod End(WT)

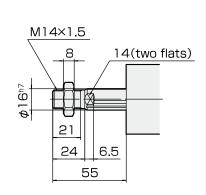

Female Thread Rod End(WS)

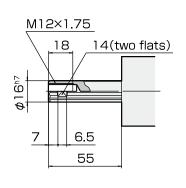

Flange Rod End(ZT)



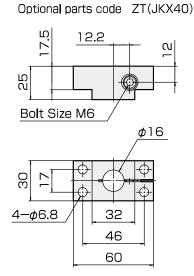

DIMENSIONS (mm) JKXB40 WITH STROKE ADJUSTER TYPE (PULL STROKE ADJUSTMENT)

Pull Stroke Adjustment ZFS---25mm ZFL···50mm

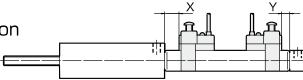




Air cushioning is available only at rod pull side.


Male Thread Rod End(WT)

Female Thread Rod End(WS)



Flange Rod End(ZT)

INSTALLATION OF SWITCH:

■Switch Setting Position

RP1, 5 Switch

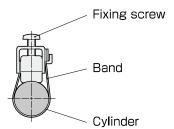
Unit: mm

Model	Switch Sett	ing Position	On hold	Hysteresis
Model	Х	Υ	distance (2)	(c)
JKXB12	9	5	7	
JKXB16	14	5	8	
JKXB20	7	6	9	O or loop
JKXB25	7	6	9	2 or less
JKXB32	7	6	8	
JKXB40	11	13	9	

Note 1: In case of short stroke cylinder, the switch may not be turned off, or two switches may be turned on at the same time. Then, slide the switch outward from the pasition shown above.

Note 2: Since the values in the table are optimum, it is permitted to mount the switch apart a little from the paint specified.

RP4 Switch


Unit: mm

Model	Switch Sett	ing Position	On hold distance	Hysteresis
Wiodel	Χ	Υ	(l)	(c)
JKXB12	7	3	3	
JKXB16	12	3	3	
JKXB20	5	4	2.5	O or loop
JKXB25	5	4	3.5	2 or less
JKXB32	5	4	3	
JKXB40	0)	11	3	

Explanation of hysteresis and on hold distance. @page 1064

Switch Installation

The switch can be moved freely in the axial or peripheral direction by loosening the fixing screw. Mount the switch at the adequate position checking the operation by the indicator lamp. The tightening torque of the fixing screw shall be 0.3N·m (3kgf·em) max.

STANDARD STROKE -

Bore Size	Stroke (mm)										
Dore Size	15	25	30	45	50	60	75	100	150	200	250
φ12	0		0	0	0	0	0	0			
φ16	0		0	0	0	0	0	0			
φ20		0	0		0		0	0	0	0	0
φ25		0			0		0	0	0	0	0
φ32		0			0		0	0	0	0	0
φ40		0			0		0	0	0	0	0

Poro Cizo		Stroke (mm)									
Bore Size	300	350	400	450	500	550	600	650	700	Available	
φ12										100	
φ16										100	
φ20	0	0	0	0	0	0				550	
φ25	0	0	0	0	0	0	0	0		650	
φ32	0	0	0	0	0	0	0	0		650	
φ40	0	0	0	0	0	0	0	0	0	700	

Those marked with a circle are standard stroke models.

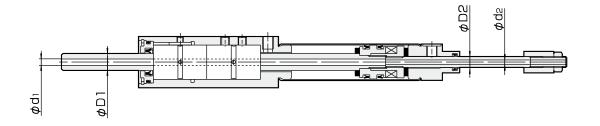
For the stroke, models can be manufactured to have a stroke in increments of 1 mm. Range For JKXB12 and 16, the minimum stroke is limited. Page 908

CUSTOM MADE

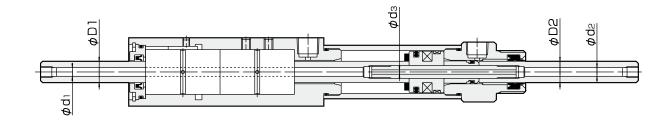
To each order, we will create a drawing of the product to be delivered based on the reference drawing shown below.

Contact us for the prices, how to order, time to delivery and detailed specification.

Hollow Rod Model·····Type with the hollow rods on both ends.


Optional······With Stroke Adjustment Mechanism With Bearing for Floating Mechanism Rod End with Male/Female Thread

Application For Vacuum Suction, etc.


The rod and hollow diameters for respective models are as shown in the table below. (Unchangeable)

Model	Spline Rod Diameter (D1)	Stroke Adjustment Rod Diameter (D2)		Stroke Adjustment Rod Hollow Diameter (d2)	Piston Shaft Hollow Diameter (d ₃)
JKXB12	φ 6	φ 4	φ2 . 5	φ1 . 5	
JKXB16	φ 8	φ 6	φЗ	φ2	
JKXB20	φ10	φ10	φ4	φ4	φ2
JKXB25	φ13	φ12	φ 5	φЗ	φЗ
JKXB32	φ13	φ12	φ 5	φЗ	φ3
JKXB40	φ16	φ16	φ7	φ5	φ4

JKXB12.16

JKXB20~40

Note: Rubber cushion for the push-out side and air cushion for the draw-back side.

