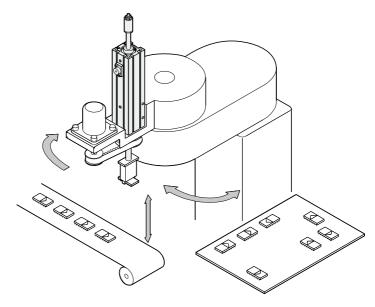

MINI SWING MINI SWING CZL Series

INDEX★

Overview1022
Explanation, Example of Use, Installation Method $\cdots 1023$
Model Code No1024
Specifications, Guide to be used, Product Mass \cdots 1025
Spare Parts Code, Theoretical Thrust · · · · · · 1026
Structure and Principal Components · · · · · · 1027
Main Body and Pulley Installation 1028
Note for Safe Use, Allowable Load Mass · · · · · · · 1029
Allowable Load and Diflection of Rod · · · · · · 1030
Precautions of End Lock······103
Kinetic Energy, Inertia Moment1032, 1033
Bearing for Floating Mechanism · · · · · · 1034, 1035
Dimensions 1036~1047
Switch Installation·····1048

Free Rotary Motion of High-Accuracy Actuator using External Driver

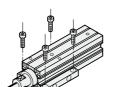


Summary of The MINI SWING

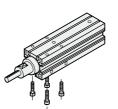
The CZL series are light-weight, compact actuators with high accuracy reciprocating and rotary motion mechanisms combined.

This single unit enables high precision rotary motion by external driver fitting rolling bearings to the linear motion block adopting a ball spline. For use on the Z axis, the end lock mechanism can be set optionally.

■ Application Examples: MINI SWING



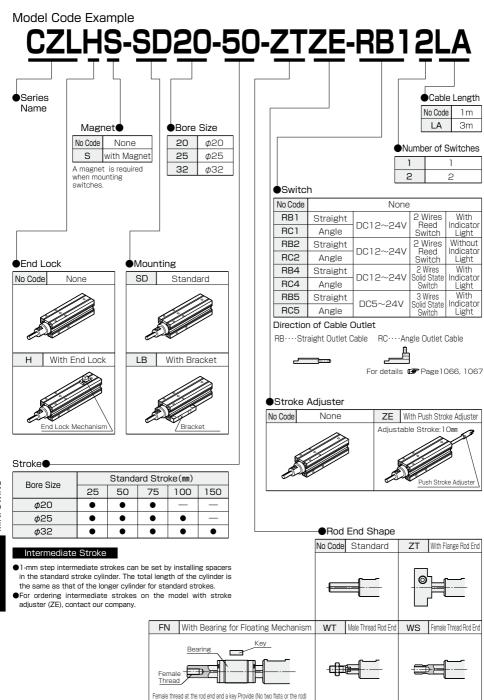
Installation Robot


■MAIN BODY INSTALLATION

(Bolt as shown in the figure are not supplied with products)

Front Mounting

Bracket Mounting



Bottom Mounting

SPECIFICATIONS

	Bore Size(mm)	φ20	φ25	φ32						
	Rod Size(mm)	φ8	φ10	φ12						
	Piping Size		M5×0.8							
	Guide Mechanism		Ball Spline							
드	Type of Operation	Double Acting								
Potion	Fluid		Air							
	Maximum Operating Pressure		0.70MPa							
Reciprocating	Minimum Operating Pressure		0.15MPa							
900	Proof Pressure		1.05MPa							
Sipr	Operating Temperature	5~60℃								
Rec	Operating Speed	50~300mm/s								
	Lubrication	Not required								
	Cushioning	Rubber Cushion								
	Stroke Adjust	Push Stroke Adjust 10mm (Option Code ZE)								
_	Driver Source		External Power							
Potion	Rotation Time		0.8s/360°							
	* Minimum Drive Torque	0.10N·m	0.16N·m	0.20N·m						
Rotating	Allowable Transfer Torque	0.74N·m	1.69N·m	2.45N·m						
ota	Allowable Kinetic Energy	0.01J	0.02J	0.034J						
ğ	Allowable Tension	25N	49N	82N						
Lock	Locking Position		Head Side only	_						
무	Manual Release	Non-lock Type								
End	Backlash	1.5mm or less								

^{*}At pressure 0.5MPa

GUIDE TYPE(BALL SPLINE)

Model	Type
CZL20	IKO LSAG8
CZL25	IKO LSAG10
CZL32	IKO LSAG12

Pre-load:Zero or slightly pre-loaded

Mass

Cylinder

O yiii	O y iii iddi								
	Model			Stroke					
	Model	25	50	75	100	150			
	CZL20	380	435	490					
Standard	CZL25	600	675	750	825				
	CZL32	1040	1145	1250	1355	1565			
With Stroke	CZL20	415	475	535					
Adjuster (ZE)	CZL25	680	765	840	925				
	CZL32	1165	1285	1405	1525	1765			

Unit: g Switch

5	●Switch	Unit: g
	Switch Type	Mass
	RB1, RB2, RB4, RB5	15
	RC1, RC2, RC4, RC5	15
	RB1LA, RB2LA, RB4LA, RB5LA	35
	RC1LA, RC2LA, RC4LA, RC5LA	30

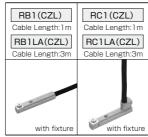
METHOD TO CALCULATE THE MASS Ex. CZLHS-SD20-50-ZE-RB12LA

●Option Unit: g										
Model	With Magnet (CTLS, CTLHS)	With End Lock Mechanism (H)	With Bracket (LB)	With Flange Rod End (ZT)	With Bearing for Floating Mechanism (FN)					
CZL20	7	95	50	17	26					
CZL25	9	130	50	30	47					
CZL32	10	210	72	50	70					

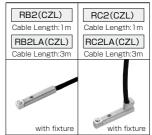
Mass of Product ····· 475g Mass of End Lock Mechanism · · · 95g Mass of Magnet · · · · · · 7g Mass of Switch · · · 35×2=70g

475+95+7+35×2=647g

Note


PARTS CODE

Note


OPTIONAL PARTS CODES

Reed Switch(2 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

Reed Switch(2 Wires, without Indicator Light) Straight Outlet Cable Angle Outlet Cable

●RB,RC Switch

Conventional RG1,RG2 switches can be replaced to RB,RC switch

Comparison with old type

Old Type	Equivalent Current Type
RG1	RB1, RC1
	RB2, RC2
RG2	RB4, RC4
	RB5, RC5

Solid State Switch(2 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

Solid State Switch(3 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

Flange Rod End

ZT(CZL □) Fill in
as bore size

Bracket

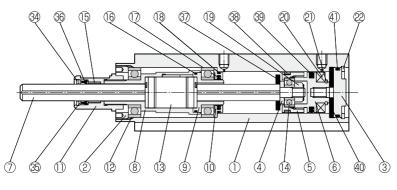
LB(CZL □) Fill in
as bore size

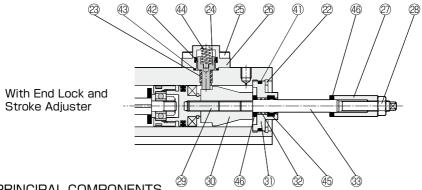
Repair Parts Kit

Standard End Lock Type

HQ(CZL □) Fill in □ as bore size.	HQ(CZLH□) Fill in □ as bore size.
For details	For details Page 1027

End Lock + Stroke Ajuster Type Stroke Ajuster Type


HQ(CZL □ZE) Fill in □ as bore size.	HQ(CZLH□ZE) Fill in □ as bore size.
For details	For details


THEORETICAL THRUST

Unit: N

Bore Size	Working						
(mm)	Direction	0.2	0.3	0.4	0.5	0.6	0.7
φ20	Push	62	94	130	160	190	220
Ψ20	Pull	53	79	110	130	160	190
φ25	Push	98	150	200	250	300	340
ΨΕΟ	Pull	82	120	170	210	250	290
φ32	Push	160	240	320	400	480	560
Ψ32	Pull	140	210	280	350	420	480

STRUCTURE AND PRINCIPAL COMPONENTS

PRINCIPAL COMPONENTS

No.	Name	Material	Remarks	No.	Name	Material	Remarks	No.	Name	Material	Remarks
1	Body	Aluminum Alloy	Alumite Treatment	12	Rolling Bearing	High Carbon Chrome Bearing Steel		23	Bush	PTFE, Steel	
2	End Cover	Aluminum Alloy	Alumite Treatment	13	Ball Spline	Steel, Resin,etc		24	Lock Pin	Steel (Heat Treatment)	Chrome Plating
3	Head Cover	Aluminum Alloy	Alumite Treatment	14	Rolling Bearing	High Carbon Chrome Bearing Steel		25	Bolt	Steel	Nickel Plating
4	Piston Spacer	Steel	Electroless Nickel Plating	15	Bush	PTFE, Steel		26	End Lock Cover	Aluminum Alloy	Alumite Treatment
5	Piston	Stainless Steel		16	O-ring	NBR		27	Stroke Adjustmnet Stopper	Steel	Nickel Plating
6	Piston Cover	Stainless Steel		17	Rotating Seal	NBR		28	Lock Nut	Steel	Nickel Plating
7	Spline Rod	High Carbon Chrome Bearing Steel	Hard Chromium Plated	18	O-ring	NBR		29	Fixing Screw	Stainless Steel	
8	Bearing Holder	Stainless Steel		19	U-nut	Carbon Steel	Nickel Plating	30	Lock Collar	Steel (Heat Treatment)	Electroless Nickel Plating
9	Bearing Spacer	Stainless Steel		20	Magnet	Resin Bound Magnet	Only with Magnet	31	WR Head Cover	Stainless Steel	
10	Inner Spacer	Aluminum Alloy		21	Snap Ring	Steel		32	Bush	PTFE, Steel	
11	Boss	Steel	Black Nickel Plating	22	Circlip	Steel	Nickel Plating	33	WR Rod	Stainless Steel	Chrome Plating

REPAIR PARTS FOR STANDARD TYPE

No.	Name	Material	Qty
34	Circlip	Steel	1
35	Rod Seal Holder	Aluminum Alloy	1
36	Spline Seal	Urethane	1
37	Cushion Rubber	Urethane	1
38	Wear Ring	Resin	1
39	Piston Seal	NBR	1
40	Rear Cushion Rubber	Urethane	1
41	O-ring	NBR	1

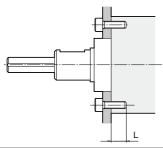
REPAIR PARTS FOR END LOCK TYPE

Ν	lo.	Name	Material	Qty
4	2	Packing	NBR	1
4	43 O-ring		NBR	1
4	44 Spring		Stainless Steel	1

REPAIR PARTS FOR STROKE ADJUSTER TYPE

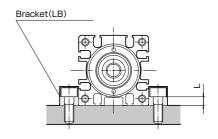
45 Rod Seal NBR	1
46 Cushion Rubber Urethane	2

REPAIR PARTS FOR END LOCK + STROKE ADJUSTER TYPE

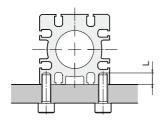

N	0.	Name	Material	Qty
4	2	Packing	NBR	1
4	43 O-ring		NBR	1
4	14 Spring		Stainless Steel	1
4	45 Rod Seal		NBR	1
4	46 Cushion Rubber		Urethane	2

Notes

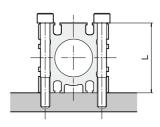
As the optional repair parts, those with the repair parts for the standard type added are shipped.


MINI SWING

Front mounting(Body Tap)

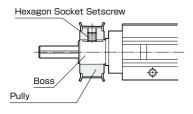

Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m
CZL20	M4×0.7	8	2.5
CZL25	M5×0.8	12	5.1
CZL32	CZL32 M6×1		8.6

Bracket(LB) mounting


Model	odel Bolt Size Thru Hole Length L(mm)		Fastening Torque N·m
CZL20	M5	4.6	5.1
CZL25	M5	4.6	5.1
CZL32	M6	5.6	8.6

Bottom mounting(Body Tap)

Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m
CZL20	M5×0.8	6	5.1
CZL25	M5×0.8	6	5.1
CZL32	M6×1	7	8.6

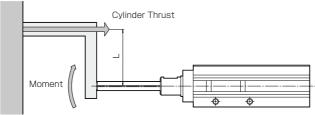

Top mounting(Thru Hole used)

Model Bolt Size		Thru Hole Length L(mm)	Fastening Torque N·m	
CZL20 M4		37	2.5	

Only CZL20

PULLEY INSTALLATION

- •Mount the pulley on the boss.
- •Fix the pulley with a hexagon socket setscrew. by using the D-cut face of the boss.


MATTERS TO BE NOTED FOR DESGINING

♠ Caution

Moment Generated by Cylinder Thrust in case of Offset Contact

When a load/work is put into contact at an offset point from the rod as shown, a large moment is generated due to cylinder thrust.

Check the table of allowable moment.

Moment=Cylinder thrust x L(offset distance)

Rod Deflection

In case where a load is light, but the stroke is long, or a load at the rod end is large, the rod deflection may sometimes become unexpectedly large.

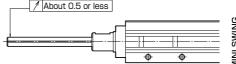
Select a model referring to the graphs of deflection.

Rod Vibration

In case where stroke is long, or load mass at the rod end is large, rod vibration may be generated at the cylinder push end. Then, decrease the speed or select a model with a size larger dia. rod. Also, when the rigidity of the base for mounting the cylinder is not sufficient, enhance the rigidity of the base.

Rod End Runout and Repeatability (Reference Value)

For oscillation with the rod at the full stroke position (fully projected), the circumferential runout of the rod end around the oscillation center axis is approximately 0.25 mm maximum.

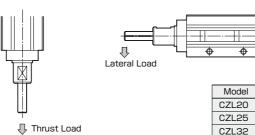

The repeatability of oscillation is approximately 0.01 mm maximum.

Rolling Feel in Bearing

The bearing (ball spline) of this product is slightly preloaded. Accordingly, when the rod is moved by hand, rolling of balls inside the bearing may cause slight feel of operation discontinuity or difference in the rolling resistance between products. This is due to preload of the bearing and does not affect the performance.

Mounting of Load

When mounting a load by using a male or female thread at the rod end, set a spanner on the across flats of the rod to prevent the tightening torque from being applied to the bearing.

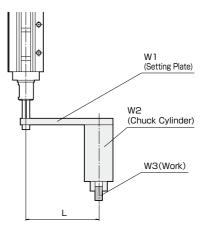


1.0

1.5

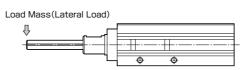
2.0

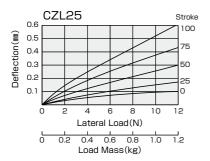
ALLOWABLE LOAD MASS -

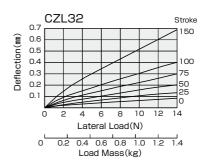

In case where the cylinder is operated under constant moment

	Model	CZL20	CZL25	CZL32
Allowable Moment		0.39	0.78	0.98
				Unit: N·m

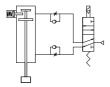
In case where a moment is applied temporarily while the cylinder stopped.


Model	CZL20	CZL25	CZL32
Allowable Moment	0.65	1.4	2.2
		•	Unit : N·m

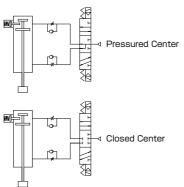

- ◆Set the load within the allowable thrust load W1+W2+W3≦(Allowable thrust load value) Allowable Load Mass ☞ page 1029 When a load that is not shown in the right figure is applied, consider the influence of the load.
- ●Check the allowable kinetic energy. ■ page 1032



Deflection



PRECAUTION FOR USING END LOCK


Recommended Pneumatic Circuit

Use of two Positions valves is recommended.

Do Not Use The Following Circuits

Do not use three positions valves as shown below. Locking is achieved, air is exhausted in the part locking mechanism is located.

Actuation

Before operating actuator supply air to the air inlet part without locking mechanism. For the subsequent reciprocating motion, repeat air supply-exhaust as usual for both of the parts. For air supply to the locking part, the back pressure must be applied to the opposite part. (Please refer to Recommended Pneumatic Circuit)

Marning

If air is supplied to the locking port when the port without locking mechanism is exhausted, an excessive force will be applied so that the locking mechanism may be damaged. Also it is dangerous because the rod will jump out.

Minimum Actuating Pressure

For the operation, apply a pressure of 0.15MPa or more. Pressure lower than that level mey be insufficient to release the lock.

Locking

When the piston rod reaches the return end of the stroke, and air in locking mechanismis side exhausted completely, then the lock pin comes out to lock the piston rod by the force of the spring.

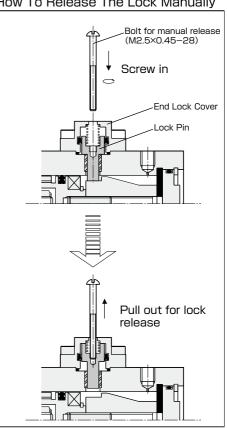
In this state, the piston rod will not drop even though air is exhausted from the actuator.

Do not supply the air to the locking part in this state. Please note that the locking will take time if the exhaust speed is too low.

•locking Release

Before relasing the lock, always supply air to the part that has no locking mechanism.

Manual Release of Lock


While the lock will be released autmatically by the normal operation, it can also be released manually. Insert a bolt from the upper hole of the end-lock cover, then screw it into the lock pin and pull it out. Then the lock will be released. The locked state will be returned by releasing the bolt. The bolt for the manual release (M2.5X0.45X28) is attached to the shipment.

For an ordinary operation, remove the bolt,

♠ Warning

Before releasing the lock, always supply the air to the part that has no locking mechanism. For a munual release, if the lock is released forcibly when a load is applied to the rod, the lock mechanism may be damaged or the rod may drop suddenly. Even if no load is applied, take every possible care for the release.

How To Release The Lock Manually

Be sure to use in conditions in which the kinetic energy calculated does not exceed the allowable kinetic energy.

■Kinetic Energy Calculation Formula

 $E = \frac{1}{2} I \omega^2$

E: Kinetic Energy J I: Inertial Moment $kg \cdot m^2$ ω : Angular Speed rad/s

Allowable Kinetic Energy

Model	Allowable Kinetic Energy
CZL20	0.01 J
CZL25	0.02 J
CZL32	0.034J

The inertial moment calculation formula depends on the shape of the article to be oscillated. See the following page.

■Calculation Example 1

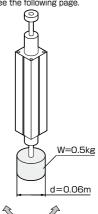
Calculate the inertial moment.

Based on the shape, use calculation formula No. 7 in the table on the following page.

$$I = W \cdot \frac{d^2}{8} = 0.5 \times \frac{-0.06^2}{8} = 0.000225 \text{ (kg} \cdot \text{m}^2\text{)}$$

Calculate the angular speed.

The oscillation should cover 90° in 0.14 seconds.


Accordingly, $90^{\circ} = 0.5 \pi$ (rad) from $360^{\circ} = 2 \pi$ (rad)

$$\omega = \frac{0.5\pi}{0.14} = \frac{0.5 \times 3.14}{0.14} = 11.21 \text{ (rad/s)}$$

The kinetic energy is:

$$E = \frac{1}{2} I \omega^2 = \frac{1}{2} \times 0.000225 \times 11.21^2 = 0.014$$
 (J)

Based on this result, either CZL25 or 32 can be used.

Oscillation of 90° in 0.14 Seconds

■Calculation Example 2

Use formula No. 11 in the table on the next page. This formula is an addition of the inertial moments of the arm and the end.

Calculate the inertial moment.

Calculate the inertial moment of the arm in formula No. 11.

$$I_1 = W_1 \cdot \frac{\ell_1^2}{3} = 0.1 \times \frac{0.06^2}{3} = 0.00012 \text{ (kg} \cdot \text{m}^2\text{)}$$

Based on the end shape, use calculation formula No. 5 in the table on the following page for the turning radius $K^{2}.\;$

$$I_2=W_2 \cdot K^2+W_2 \cdot \ell_2^2=W_2 \cdot \frac{a^2+b^2}{12} + W_2 \cdot \ell_2^2$$

$$=0.2\times\frac{-0.03^2+0.02^2}{12}+0.2\times0.07^2$$

 $=0.0009866 (kg \cdot m^2)$

Calculate the angular speed.

The oscillation should cover 120° in 0.3 seconds.

Accordingly, $120^{\circ} = 0.67 \ \pi$ (rad) from $360^{\circ} = 2 \ \pi$ (rad)

$$\omega = \frac{0.67\pi}{0.3} = \frac{0.67 \times 3.14}{0.3} = 7.01 \text{ (rad/s)}$$

The kinetic energy is:

$$E = \frac{1}{2} (I_1 + I_2) \ \omega^2 = \frac{1}{2} \times (0.00012 + 0.0009866) \times 7.01^2 = 0.027 \ (J)$$

Based on this result, CZL32 can be used.

Oscillation of 120° in 0.3 Seconds

CALCULATION OF INERTIA MOMENT -

I: Moment of Inertia W: Mass

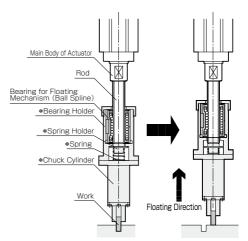
No.	Shape	Inertia moment	Rotational Radius	No.	Shape	Inertia moment	Rotational Radius
1	Thin bar	$V = I = W \cdot \frac{\ell^2}{12}$	$K^2 = \frac{\ell^2}{12}$	7	Pillar (including a thin	$I = W \cdot \frac{d^2}{8}$	$K^2 = \frac{d^2}{8}$
2	Thin bar	$I = W_1 \cdot \frac{\ell_1^2}{3} + W_2 \cdot \frac{\ell_2^2}{3}$	$K^2 = \frac{\ell_1^2}{3} + \frac{\ell_2^2}{3}$	8	Combination of pillar W1	$I = W_1 \cdot \frac{d_1^2}{8} + W_2 \cdot \frac{d_2^2}{8}$	$K^2 = \frac{d_1^2}{8} + \frac{d_2^2}{8}$
3	Thick bar	$I = W\left(\frac{\ell^2}{12} + \frac{d^2}{16}\right)$	$K^2 = \frac{\ell^2}{12} + \frac{d^2}{16}$	9	Sphere	$I = M \cdot \frac{d_5}{10}$	$K^2 = \frac{d^2}{10}$
4	Thin rectangle board (or		$K^2 = \frac{a^2}{12}$	10	Thin disk	$I = M \cdot \frac{d_5}{16}$	$K^2 = \frac{d^2}{16}$
5	Rectangle board (cubic-	rectangle) $I = W \cdot \frac{a^2 + b^2}{12}$	$K^2 = \frac{a^2 + b^2}{12}$	11	Concentrated load at 1	the top of a bar $\frac{\ell^2}{3}$ $: W_1 \cdot \frac{\ell_1^2}{3} + W_2 \cdot K^2 + W_2 \cdot \ell_2^2$	Calculation using the shape of W ₂
6	Rectangle board (cubic-		$K^2 = \frac{4a_1^2 + b^2}{12} + \frac{4a_2^2 + b^2}{12}$				

BEARING FOR FLOATING MECHANISM (Option Code FN)

Prevention of damage when work installation fails

In case where work installation fails due to incomplete location, defective parts, etc. and the work is bumped, the floating mechanism will prevent the work from damage by absorving the shock.

Softening of impact force at work installation


In case where an impact force due to actuator velocity may cause breakage of work or defective assembling at work installation, the floating mechanism will prevent the work from such damage by softening the impact force and help to achieve smooth work installation and press fit.

Work installation at different levels

In case where works are installed at the positions of different levels, only one actuator can perform the operation by setting floating stroke by level difference in advance.

- The bearing for floating mechanism incorporates the high precision and high rigidity ball spline.
- ●As for the parts (parts marked * in the figure right) other than the bearing for floating mechanism, it is required to design and produce the construction and parts fitting with the machine at your side.

Construction and application example

MATTERS TO BE NOTED FOR DESIGNING

①Specific resistnace of Bearing

The bearing for floating mechanism has the specific resistance respectively. Pay attention to the setting load value of the spring. (The spring force shall be determined from a viewpoint of the mechanism as a whole.)

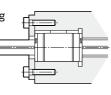
Model	Specific Resistance N
CZL20	3
CZL25	3.5
CZL32	4

②For Bearing of check mark

The check mark means the digit indicated in the optional place on the outside of the bearing. The digit are optional and mean nothing.

3 Combination of the bearing and the rod

The bearing for floating mechanism and the rod are combinedly supplied. If other bearing, which is ordered additionally, attached to other actuator (including the part of the same specification), or purchased from somewhere afterward, is mounted to the rod, this may cause malfunction or poor accuracy. Be sure to use bearing attached to the actuator. The check mark (See clause 2 of this note.) on the bearing has nothing to do with the combination with rod. Even if the check mark on the bearing is the same, the combination of the bearing and the rod is another matter.


4) Tolerance of the housing inside dia. for the bearing

Generally, the tolerance between the bearing for floating mechanism and the housing shall be by transition fit (J6). In case where accuracy is not so required, it shall be by loose fit (H7).

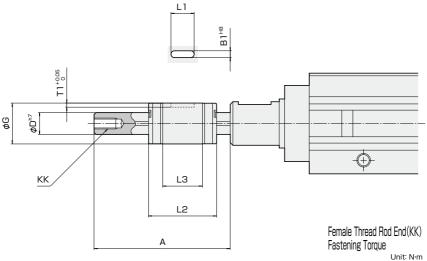
Tolerance of Housing	General Service Conditions	J6
Inside Dia.	Accuracy is not required	H7

5 Mounting of the bearing

The right figure shows a mounting example of the bearing for floating mechanism. Fixing strength in the axial direction is not so required, but only driving fit is not enought to hold and another measures shall be taken.

(6) Insertion of the bearing

Use the insertion jig in the figure on the right to insert the bearing for floating mechanism into the bearing holder. Insertion with the bearing tilted may cause galling, which may adversely affect the performance such as increase of the specific resistance. The side plates on the two ends of the bearing are made of plastic. Avoid pressing with expressive force.



Model	di	D		
CZL20	φ 7.0	φ14.5		
CZL25	φ 8.5	φ18.5		
CZL32	φ10.5	φ20.5		

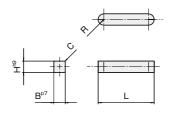
(7) Actual stroke of the actuator

The length of actuator stroke minus floating stroke is the stroke by which the work actually shifts. Be careful to select stroke.

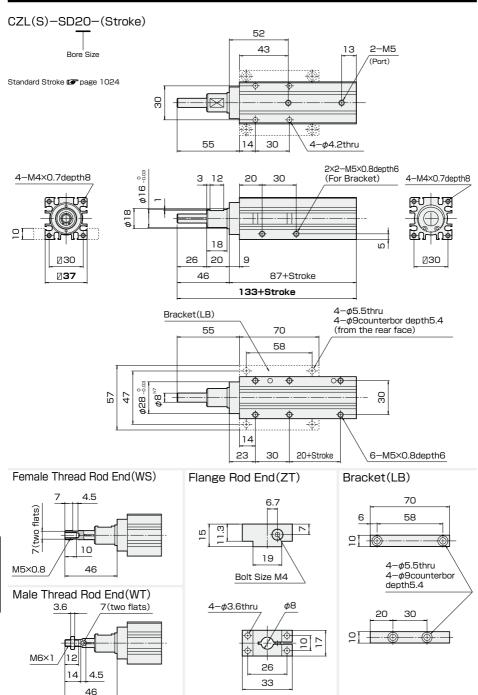
DIMENSIONS OF ROD END WITH BEARING FOR FLOATING MECHANISM (Option code FN)

Model	Fastening Torque
CZL20	1.7
CZL25	4.8
CZL32	6.6

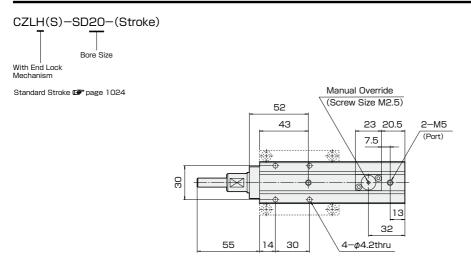
Unit: mm

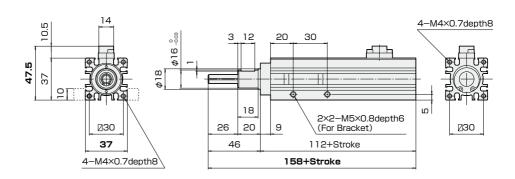

Model	Α	B1 ^{H8}	D ^{h7}	G	KK	Ll	L2	L3	T1 ^{+0.05}
CZL20	50	2.5	φ8	φ15-0.011	M4x0.7 depth8	8.5	(25)	14.6	1.5
CZL25	55	3	φ10	φ19 _{-0.013}	M5×0.8 depth 10	11	(30)	18.2	1.8
CZL32	65	3	φ12	φ21- _{0.013}	M6×1 depth12	15	(35)	23	1.8

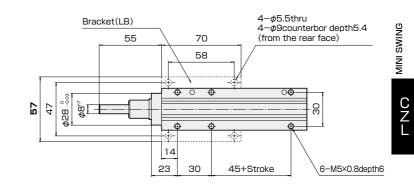
Note 1: Bearing Dimensions ϕG shows the dimensions of L3 part.

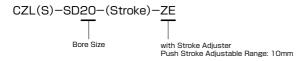

Note 2: The rod protrudes longer than that of the standard type (A in the figure). Check the total length of the cylinder. For the details of the other dimensions, Please see the page of Dimensions.

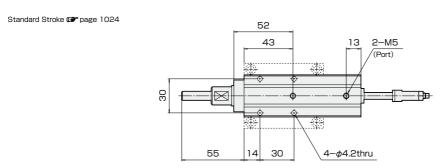
Note 3: A bolt and washer to prevent the bearing from dropping are attached to the female thread (KK in the figure) for shipment. Remove the bolt and washer before using the cylinder. (The bolt and washer are not adhered.)

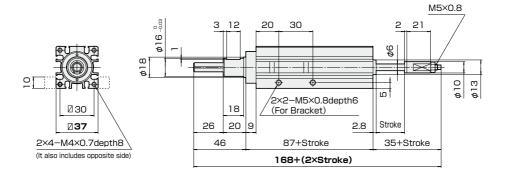

■DIMENSIONS of KEY (A KEY IS ATTACHED TO THE PRODUCT.)

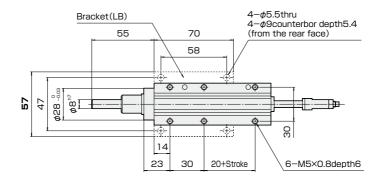



					Unit: m
Model	B ^{p7}	С	H ^{h9}	L	R
CZL20	2.5	0.16	2.5	8.3	1.25
CZL25	3	0.16	3	10.8	1.5
CZL32	3	0.16	3	14.8	1.5

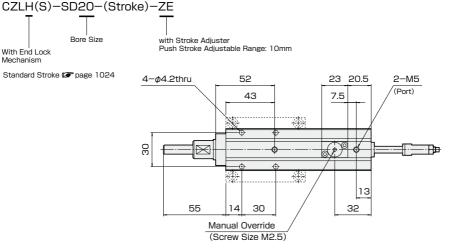

DIMENSIONS(mm) CZL20 END LOCK TYPE

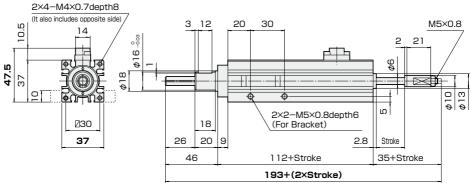


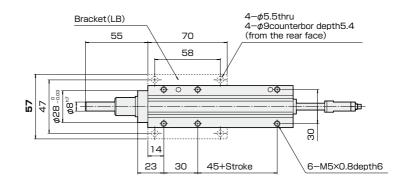




- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock rpage 1031

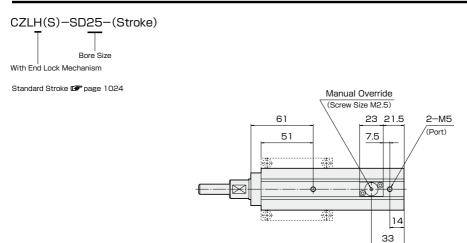


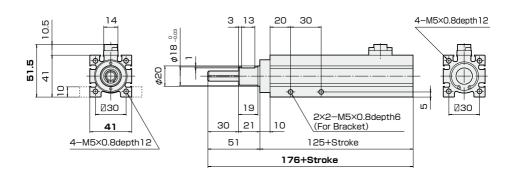

[●]Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB)

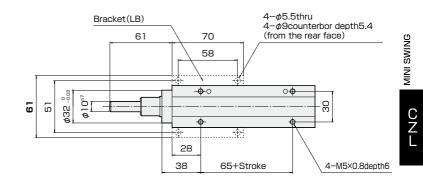

③ page 1036

[●]With Bearing for Floating Mechanism page 1034

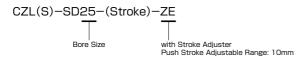
CZLH20 STROKE ADJUSTER AND END LOCK TYPE DIMENSIONS (mm)

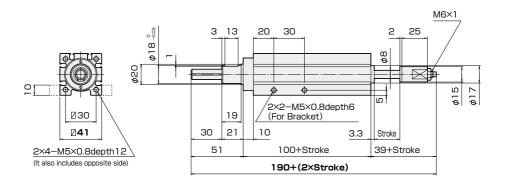


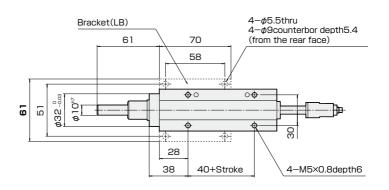



- ●Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) (page 1036
- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock (page 1031

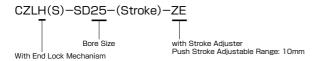
CZL(S)-SD25-(Stroke)

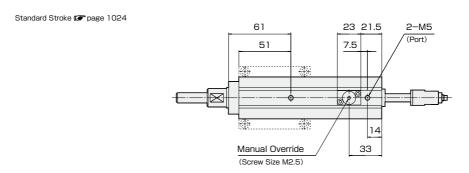

DIMENSIONS(mm) CZL25 END LOCK TYPE

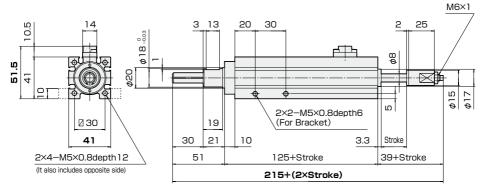


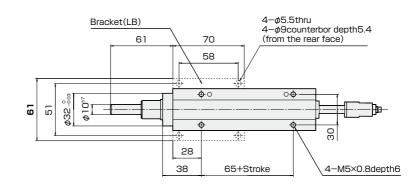


- ●Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) @ page 1036
- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock page 1031

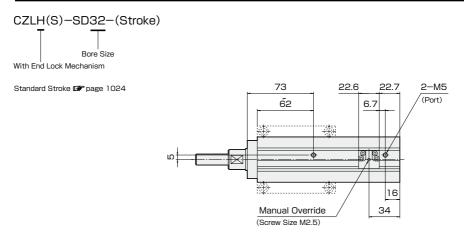


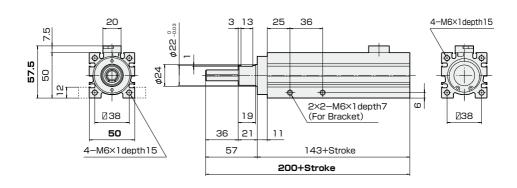


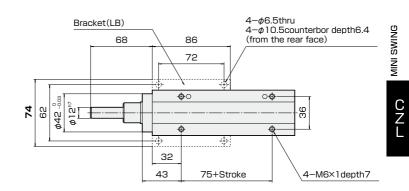

[●]Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) @Fpage 1036


[●]With Bearing for Floating Mechanism page 1034

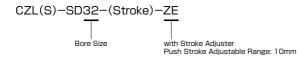
DIMENSIONS (mm) CZLH25 STROKE ADJUSTER AND END LOCK TYPE

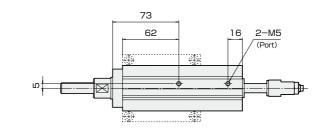


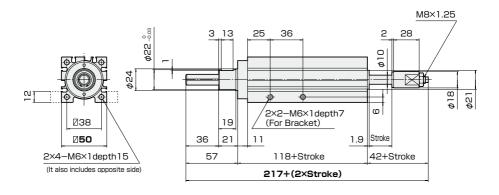


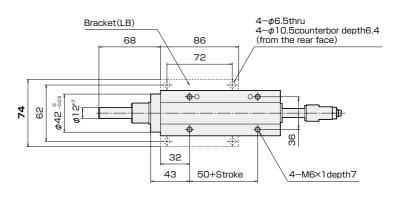

- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock rpage 1031

CZL(S)-SD32-(Stroke)

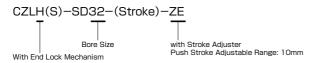

CZL32 END LOCK TYPE DIMENSIONS (mm)

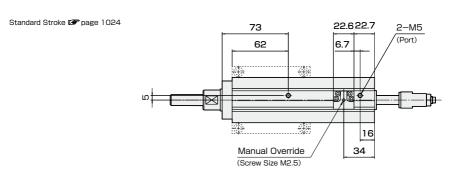


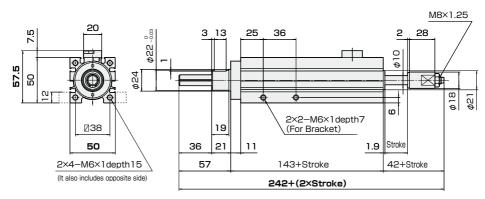


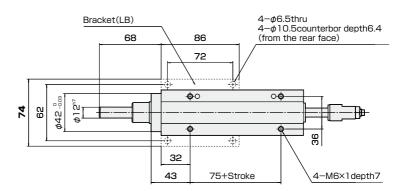

- ●Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) @page 1036
- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock (page 1031

Standard Stroke Page 1024

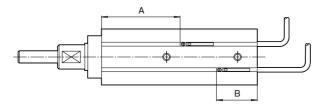







[●]Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) @Page 1036 ●With Bearing for Floating Mechanism ☞ page 1034

DIMENSIONS (mm) CZLH32 STROKE ADJUSTER AND END LOCK TYPE



- ●Female Thread Rod End(WS), Male Thread Rod End(WT), Flange Rod End(ZT), Bracket(LB) @page 1036
- ●With Bearing for Floating Mechanism page 1034
- ●Precaution for using End Lock rpage 1031

■Switch Setting Position

Standard Type Stroke Adjuster Type

Unit: mm

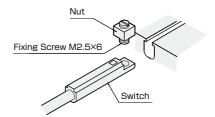
	RB	(RC)1,2(Reed Swit	ch)	RB(R0	C)4, 5(Sol	id State S	State Switch)		
Model	Switch Setting Position		On Hold	Hysteresis	Switch Setting Position		On Hold	Hysteresis		
	Α	В	Distance(l)		Α	В	Distance(ℓ)	(c)		
CZL20	55	25	11		57	23	4.5			
CZL25	65	26	12	1	67	24	4	1		
CZL32	76	28	13		78	26	4			

End Lock Type

End Lock + Stroke Adjuster Type

Unit: mm

		RB	(RC)1,2(I	Reed Swite					State Switch)		
	Model	Switch Sett	ing Position On Hold		Hysteresis	Switch Setting Position		On Hold	Hysteresis		
		Α	В	Distance(l)		Α		Distance(l)	(c)		
	CZL20	55	47	11		57	45	4.5			
ſ	CZL25	65	50	12	1	67	48	4	1		
	CZL32	76	52	13		78	50	4			


Explanation of hysteresis and on hold distance Page 1064

■Installation of Switch

Assemble the fixing screw with a nut to the switch. Insert the switch into the groove.

After setting the position, fasten the screw by a screwdriver.

Fastening torgue of fixing screw must be 0.1 N·m.

