LINEAR TWIST®

CTW·CTX Series

LINEAR TWIST

Registration of Utility Model

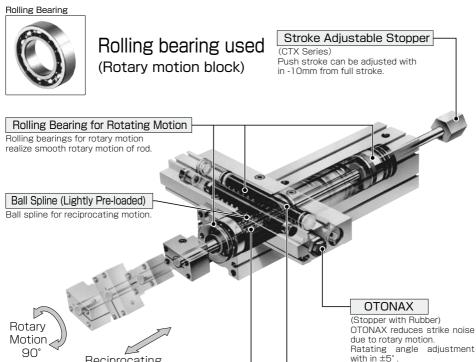
INDEX★

Overview992
Explanation, Example of Use, Installation Method · · · · · 995
Model Code No996
Specifications, Guide to be used, Product Mass·····997
Spare Parts Code, Theoretical Thrust998
Adjustment and Change of Rotation Angle999
Structure and Principal Components · · · · · · 1000, 1001
Main Body Installation · · · · · · 1002
Note for Safe Use, Effective Torque ······1003, 1004
Allowable Moment, Allowable Load Mass · · · · · · · 1005
Calculation of Kinetic Energy · · · · · · 1006
Calculation of Inertia Moment · · · · · · 1007
Allowable Load Mass, Aloowable Lateral Loud and Rod Deflection \cdots 1008
Bearing for Floating Mechanism, Note for Safe Use ···· 1008
Dimensions of Rod End with Bearing for Floating Mechanism, Dimensions of Key \cdot 1 OOS
Optional Dimensions · · · · · · 1011
Dimensions1012~1015
Switch Installation · · · · · · 1016. 1017

LINEAR TWIST

Reciprocating

Motion

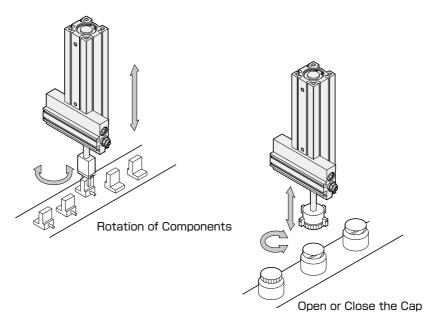

CTW·CTX Series

High-Accuracy Reciprocating and Rotary Motions can be Achieved with one Linear Twist.

Backlash + ()°

High-accuracy ball spline used (Liner motion block)

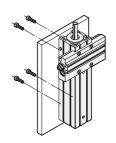
Rotary Actuator Double-rack achieves backlash "O".

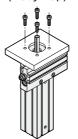

180°

Summary of The LINEAR TWIST

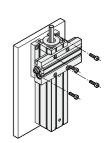
The CTW /CTX Series are light-weight, compact actuators integrating high-accuracy reciprocating and rotary motion mechanism.

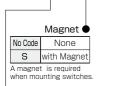
High-accuracy reciprocating and rotary motions can be achieved with one Linear Twist by combining the linear motion block using ball spline with the rotary motion block of excellent operating stability (rack & pinion).

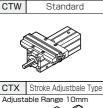

■ Application Examples: LINEAR TWIST


MAIN BODY INSTALLATION

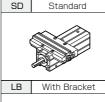
(Bolt as shown in the figure are not supplied with products)


Bottom Mounting (Body Tap)


Front Mounting (Body Tap)


Bracket Mounting (Thru Hole used)

<u>WS-SD25-50-VHZT-RB14LA</u>


Series Name

ush Stroke Adjuste

Mounting SD

Bore Size

φ25

φ32

25

32

Stroke •

Bore Size	Standard Stroke(mm)			
Dule Size	25	50	75	100
φ25	•	•	•	_
φ32	•	•	•	•

Intermediate Stroke

1-mm step intermediate strokes can be set by installing spacers in the standard stroke cylinder. The total length of the cylinder is the same as that of the longer cylinder for standard strokes. For ordering intermediate strokes on the model with stroke adjuster (CTX). contact our company.

Switch Mountable Minimum Stroke and Minimum Rotation Angle

Number of Switches	Stroke	Rotation Angle
One Switch	5	20°
Two Switch	5	30°
Two Switches in a row	35	

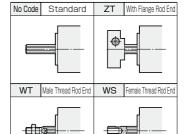
Rotation Angle VQ 90° VH 180°

Cable Length No Code 1m LA Зm

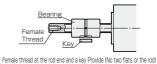
> Number of Switches 2 2 3 3 4 4

Switch

No Code	None			
RB1	Straight	DC12~24V	2 Wires Reed	With Indicator
RC1	Angle	DC12~24V	Switch	Light
RB2	Straight	DC12~24V	2 Wires Reed	Without
RC2	Angle	DC12~24V	Switch	Light
RB4	Straight	DC12~24V	2 Wires Solid State	With Indicator
RC4	Angle	DC12~24V	Switch	Light
RB5	Straight	DC5~24V	3 Wires Solid State	With Indicator
RC5	Angle	D00.924V	Switch	Light


Direction of Cable Outlet

RB····Straight Outlet Cable RC····Angle Outlet Cable



For details Page 1066, 1067

Rod End Shape

SPECIFICATIONS

	Bore Size(mm)	φ	25	φ3	32	
Potion	Rod Size(mm)	Φ	8	φ.	10	
	Piping Size	M5×0.8				
	Guide Mechanism		Ball 9	Spline		
	Type of Operation		Double Acting			
	Fluid	Air				
	Maximum Operating Pressure	0.7 MPa				
ţį	Minimum Operating Pressure		0.15	iMPa		
Reciprocating	Proof Pressure		1.05MPa			
ip	Operating Temperature	5~60℃				
Rec	Operating Speed	50~300mm/s				
	Lubrication	Not required				
	Cushioning	Rubber Cushion				
	Stroke Adjust	Push Stroke Adjust 10mm (CTX Series)				
	Driver	Double Acting Piston (Rack and Pinion Type)				
	Bore Size(mm)	φ12		<i>φ</i> 16		
	Internal Volume	VQ	VH	VQ	VH	
_	internal volume	2.3m ℓ	4.6m ℓ	5.5m ℓ	1 1 m ℓ	
Potion	Piping Size	M5×0.8				
	Rotation Angle	90°, 180°				
Rotating	Range of Adjustable Angle	±5°				
otai	Maximum Operating Pressure	0.7MPa				
ĕ	Minimum Operating Pressure	0.2MPa				
	Service Rotation Time	0.2~0.5s/90°				
	Minimum Drive Touque	0.62	?N·m	1.46N·m		
Allowable Kinetic Energy 0.5×10 ⁻² J			1.1×10 ⁻² J			

For the effective torque Page 1004

180°

90°

180°

GUIDE TYPE(BALL SPLINE)

Model	Type
CTW(X)25	THK LT 8
CTW(X)32	THK LT10

Pre-load:Zero or slightly pre-loaded

1030

1770

1960

1120

1900

2090

2030

2220

Mass

CTX32

Cylinder

O J III I	٠				UIIIL E
Model	Rotation		Str	oke	
Model	Angle	25	50	75	100
CTW25	90°	760	840	920	
CIVVES	180°	850	930	1010	
CTW32	90°	1490	1605	1720	1835
CIWSE	180°	1680	1795	1910	2025
CTX25	90°	850	940	1030	
01723	1000	0.40	1000	1100	

940

1640

1830

●Option	n			Unit: g
Model	With Magnet (CTWS,CTXS)	With Bearing for Floating Mechanism (FN)		With Flange Rod End (ZT)
CTW(X)25	20	30	50	17
CTW(X)32	30	70	72	30

●Switch	Unit:
Switch Type	Mass
RB1, RB2, RB4, RB5	15
RC1, RC2, RC4, RC5	15

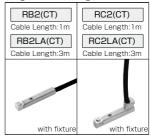
Switch Type	Mass
RB1, RB2, RB4, RB5	15
RC1, RC2, RC4, RC5	15
RB1LA, RB2LA, RB4LA, RB5LA	35
RC1LA, RC2LA, RC4LA, RC5LA	35

METHOD TO CALCULATE THE MASS Ex. CTWS-LB25-50-VQZT-RB14LA

840+20+50+17+140=1067g

OPTIONAL PARTS CODES

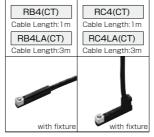
Name


Switch Fixture

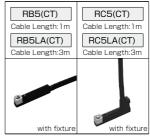
Reed Switch(2 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

RB1(CT) Cable Length: 1 m RB1LA(CT)	RC1(CT) Cable Length:1m RC1LA(CT)
Cable Length:3m	Cable Length:3m
with fixture	with fixture

Reed Switch(2 Wires, without Indicator Light) Straight Outlet Cable Angle Outlet Cable


●RB.RC Switch

Conventional RG1,RG2 switches can be replaced to RB.RC switch


Comparison with old type

Old Type	Equivalent Current Type
RG1	RB1, RC1
	RB2, RC2
	RB4, RC4
	RB5, RC5

Solid State Switch(2 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

Solid State Switch(3 Wires, with Indicator Light) Straight Outlet Cable Angle Outlet Cable

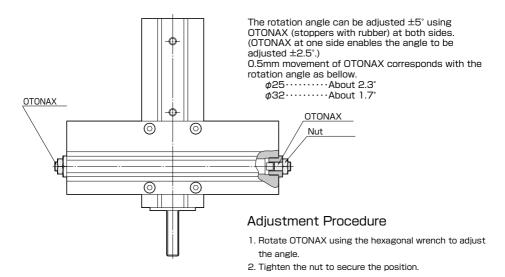
Bracket

Flange Rod End

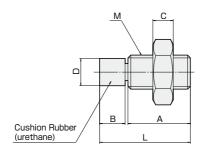
Repair Parts Kit

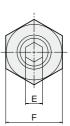
Stroke Ajuster Type Standard

HQ(CTW25)	HQ(CTX25)
For CTW25	For CTX25
HQ(CTW32)	HQ(CTX32)
For CTW32	For CTX32
For details	For details


THEORETICAL THRUST

I Imi++ N			
	1	Init:	Λ

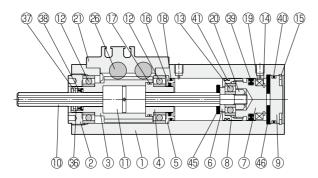

								OTIL: IN	
Series Name Bore Size		Working		Operating Pressure MPa					
Series ivallie (mm)	Direction	0.2	0.3	0.4	0.5	0.6	0.7		
φ25 CTW φ32	Push	96	140	190	240	290	340		
	Pull	88	130	170	220	260	300		
	Push	160	240	320	390	470	550		
	Ψ32	Pull	140	210	280	360	430	500	
CTV	φ25	Push-Pull	88	130	170	220	260	300	
CTX	φ32	Push·Pull	140	210	280	360	430	500	



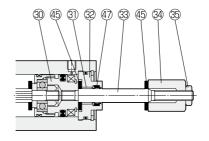
ADJUSTMENT OF ROTATION ANGLE

■OTONAX Outside Dimensions

Bore Size	Model	Α	В	С	D	Е	F	L	М
CTW(X)25	OTONAX-6S	11	4.5	3.6	φ4.8	3	10	16	M6x1
CTW(X)32	OTONAX-8S	15	5.5	5	φ6.5	4	13	21	M8x1.25


For OTONAX with other sizes @page 1053

■Change of Rotation Angle


The rotation angle can be changed by replacing OTONAX at both sides with a medium-size OTONAX sold separately.

Bore Size	!	OTONAX model for change	Rotation Angle Range before change	Rotation Angle Range after change
OTW/WOE		OTONAX-6M	85°∼ 95°	0°∼ 95°
CTW(X)25	UTUNAX-6W	175°~185°	83°~185°	
CTW(V)22		OTONAX-8M	85°∼ 95°	17°∼ 95°
CTW(X)32	UTUNAX-6W	175°~185°	107°∼185°	

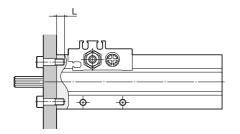
CTW Serise

CTX Serise

PRINCIPAL COMPONENTS

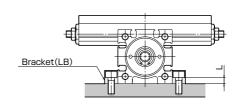
No.	Name	Material	Remarks	No.	Name	Material	Remarks
1	Body	Aluminum Alloy	Alumite Treatment	19	Magnet	Resin Bound Magnet	
2	End Cover	Aluminum Alloy		20	U-nut	Steel	Nickel Plating
3	Pinion Bearing Holder	Steel	Nitriding	21	Rotary Actuator Body	Aluminum Alloy	Alumite Treatment
4	Bearing Spacer	Stainless Steel		22	Front Cover	Stainless Steel	
5	Inner Spacer	Aluminum Alloy		23	Rear Cover	Synthetic Resin	
6	Piston Spacer	Steel	Electroless Nickel Plating	24	Stopper Receiver	Stainless Steel	
7	Piston Cover	Stainless Steel		25	Piston	Synthetic Resin	
8	Piston	Stainless Steel		26	Rack	Stainless Steel	Nitriding
9	Head Cover	Aluminum Alloy		27	OTONAX	Stainless Steel	
10	Spline Rod	High Carbon Chrome Bearing Steel	Hard Chromium Plated	28	Lock Nut	Steel	Nickel Plating
11	Ball Spline	Steel, Resin,etc		29	Magnet	Resin Bound Magnet	
12	Rolling Bearing	Steel		30	Piston Cover	Stainless Steel	
13	Rolling Bearing	Steel		31	Bush	PTFE, Steel	
14	Snap Ring	Steel		32	Head Cover	Stainless Steel	
15	Circlip	Steel	Nickel Plating	33	Stroke Adjustmnet Rod	Stainless Steel	
16	Rotating Seal	NBR		34	Stroke Adjustmnet Stopper	Steel	Nickel Plating
17	O-ring	NBR		35	Lock Nut	Steel	Nickel Plating
18	0-ring	NBR			•	•	

REPAIR PARTS

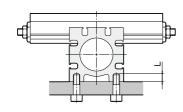

CTW

No.	Name	Material	Qty	Remarks
36	Rod Seal Holder	Aluminum Alloy	1	
37	Circlip	Steel	1	Nickel Plating
38	Spline Seal	Urethane Rubber	1	
39	Piston Seal	NBR	1	
40	0-ring	NBR	1	
41	Wear Ring	Synthetic Resin	1	
42	Circlip	Steel	2	Nickel Plating
43	Piston Seal	NBR	2	
44	0-ring	NBR	2	
45	Cushion Rubber	Urethane Rubber	1	
46	Rear Cushion Rubber	Urethane Rubber	1	

CTX


No.	Name	Material	Qty	Remarks
36	Rod Seal Holder	Aluminum Alloy	1	
37	Circlip	Steel	1	Nickel Plating
38	Spline Seal	Urethane Rubber	1	
39	Piston Seal	NBR	1	
40	0-ring	NBR	1	
41	Wear Ring	Synthetic Resin	1	
42	Circlip	Steel	2	Nickel Plating
43	Piston Seal	NBR	2	
44	0-ring	NBR	2	
45	Cushion Rubber	Urethane Rubber	3	
47	Rod Seal	NBR	1	

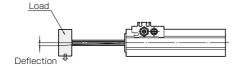
Front mounting(Body Tap)


Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m	
CTW(X)25	M5×0.8	6	5.1	
CTW(X)32	M6×1	8	8.6	

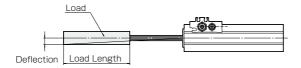
Bracket mounting(Thru Hole used)

Model	Bolt Size	Thru Hole Length L(mm)	Fastening Torque N·m
CTW(X)25	M5	4.6	5.1
CTW(X)32	М6	5.6	8.6

Bottom mounting(Body Tap)


Model	Bolt Size	Screw Depth L(mm)	Fastening Torque N·m
CTW(X)25	M5×0.8	6	5.1
CTW(X)32	M6×1	7	8.6

MATTERS TO BE NOTED FOR DESGINING


∆ Caution

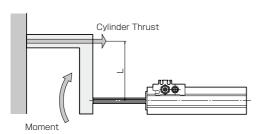
Rod End Deflection in case of Horizontal Use

Deflection is generated due to the load mounted at the rod end. See the graphs on pages 1026 for allowable load mass and deflection.

When the load length is long, the deflection at the load end is larger than that at the rod end.

In this case, read the deflection from the graph taking the length of the load length plus cylinder stroke as cylinder stroke.

Example: Cylinder Stroke · · · · · · 75mm Load Length·····50mm


Assuming 75+50=125mm as cylinder stroke,

read the deflection at the point (75+50)mm of cylinder stroke from the graph.

Moment Generated by Cylinder Thrust in case of Offset Contact

When a load/work is put into contact at an offset point from the rod as shown, a large moment is generated due to cylinder thrust.

Check the table of allowable moment.

Moment=Cylinder thrust x L(offset distance)

Rod Deflection

In case where a load is light, but the stroke is long, or a load at the rod end is large, the rod deflection may sometimes become unexpectedly large.

Select a model referring to the graphs of deflection.

Rod Vibration

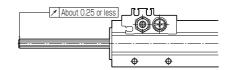
In case where stroke is long, or load mass at the rod end is large, rod vibration may be generated at the cylinder push end.

Then, decrease the speed or select a model with a size larger dia. rod.

Also, when the rigidity of the base for mounting the cylinder is not sufficient, enhance the rigidity of the base.

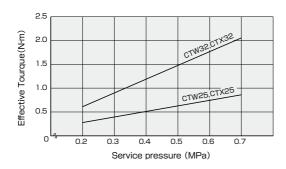
Rod End Runout and Repeatability (Reference Value)

For oscillation with the rod at the full stroke position (fully projected), the circumferential runout of the rod end around the oscillation center axis is approximately 0.25 mm maximum.

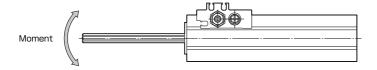

The repeatability of oscillation is approximately 0.01 mm maximum.

Rolling Feel in Bearing

The bearing (ball spline) of this product is slightly preloaded. Accordingly, when the rod is moved by hand, rolling of balls inside the bearing may cause slight feel of operation discontinuity or difference in the rolling resistance between products. This is due to preload of the bearing and does not affect the performance.


Mounting of Load

When mounting a load by using a male or female thread at the rod end, set a spanner on the across flats of the rod to prevent the tightening torque from being applied to the bearing.

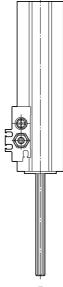

EFFECTIVE TOURQUE

ALLOWABLE MOMENT

In case where a moment load is applied to the rod end

In case where the cylinder is operated under constant moment

Model	Allowable Moment N·m
CTW(X)25	0.4
CTW(X)32	1.2


In case where a moment is applied temporarily while the cylinder stopped

Model	Allowable Moment N·m
CTW(X)25	1.2
CTW(X)32	3.1

ALLOWABLE LOAD MASS (When the vertical up-and-down direction use)

Model	Allowable Load Mass kg
CTW(X)25	1.5
CTW(X)32	2

Allowable Load Mass, Allowable Lateral Load and Rod Deflection page 1008

Allowable Load Mass 🌗

Be sure to use in conditions in which the kinetic energy calculated does not exceed the allowable kinetic energy.

■Kinetic Energy Calculation Formula

E=	1	I	ω²
_	2	_	

E : Kinetic Energy J I : Inertial Moment. kg·m² ω : Angular Speed rad/s

Allowable Kinetic Energy

Model	Allowable Kinetic Energy
CTW25	0.5×10 ⁻² J
CTW32	1.1×10 ⁻² J

The inertial moment calculation formula depends on the shape of the article to be oscillated. See the following page.

■Calculation Example 1

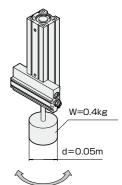
Calculate the inertial moment.

Based on the shape, use calculation formula No. 7 in the table on the following page.

$$I = W \cdot \frac{d^2}{8} = 0.4 \times \frac{0.05^2}{8} = 0.000125 \text{ (kg} \cdot \text{m}^2\text{)}$$

•Calculate the angular speed.

The oscillation should cover 90° in 0.2 seconds.


Accordingly, $90^{\circ} = 0.5 \pi$ (rad) from $360^{\circ} = 2 \pi$ (rad)

$$\omega = \frac{0.5\pi}{0.2} = \frac{0.5 \times 3.14}{0.2} = 7.85 \text{ (rad/s)}$$

The kinetic energy is:

$$E = \frac{1}{2} I \omega^2 = \frac{1}{2} \times 0.000125 \times 7.85^2 = 0.39 \times 10^{-2}$$
 (J)

Based on this result, either CTW(X)25 or 32 can be used.

Oscillation of 90° in 0.2 Seconds

■Calculation Example 2

Use formula No. 11 in the table on the next page. This formula is an addition of the inertial moments of the arm and the end.

Calculate the inertial moment.

Calculate the inertial moment of the arm in formula No. 11.

$$I_1 = W_1 \cdot \frac{\ell_1^2}{3} = 0.1 \times \frac{0.06^2}{3} = 0.00012 \text{ (kg} \cdot \text{m}^2\text{)}$$

Based on the end shape, use calculation formula No. 5 in the table on the following page for the turning radius K^{2} .

$$I_2 = W_2 \cdot K^2 + W_2 \cdot \ell_2^2 = W_2 \cdot \frac{a^2 + b^2}{12} + W_2 \cdot \ell_2^2$$

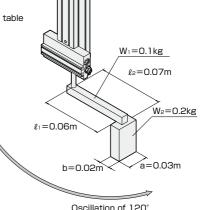
$$=0.2\times\frac{-0.03^2+0.02^2}{12}+0.2\times0.07^2$$

 $=0.0009866 (kg \cdot m^2)$

Calculate the angular speed.

The oscillation should cover 120° in 0.5 seconds.

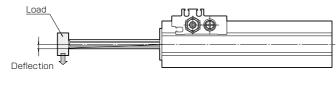
Accordingly, $120^{\circ} = 0.67 \ \pi$ (rad) from $360^{\circ} = 2 \ \pi$ (rad)

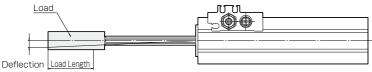

$$\omega = \frac{0.67\pi}{0.5} = \frac{0.67 \times 3.14}{0.5} = 4.21 \text{ (rad/s)}$$

The kinetic energy is:

in 0.5 Seconds
$$E = \frac{1}{2} (I_1 + I_2) \ \omega^2 = \frac{1}{2} \times (0.00012 + 0.0009866) \times 4.21^2 = 0.98 \times 10^{-2} \text{ (J)}$$

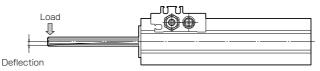
Based on this result, CTW(X)32 can be used.

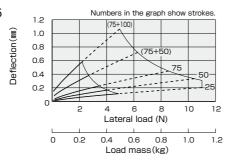

I: Moment of Inertia W: Mass


No.	Shape	Inertia moment	Rotational Radius	No.	Shape	Inertia moment	Rotational Radius
1	Thin bar	W $I = W \cdot \frac{\ell^2}{12}$	$K^2 = \frac{\ell^2}{12}$	7	Pillar (including a thin	disk) $I = W \cdot \frac{d^2}{8}$	$K_5 = \frac{8}{q_5}$
2	Thin bar	$I = W_1 \cdot \frac{\ell_1^2}{3} + W_2 \cdot \frac{\ell_2^2}{3}$	$K^2 = \frac{\ell_1^2}{3} + \frac{\ell_2^2}{3}$	8	Combination of pillar W1	$I = W_1 \cdot \frac{d_1^2}{8} + W_2 \cdot \frac{d_2^2}{8}$	$K^2 = \frac{d_1^2}{8} + \frac{d_2^2}{8}$
3	Thick bar	$I = W\left(\frac{\ell^2}{12} + \frac{d^2}{16}\right)$	$K^2 = \frac{\ell^2}{12} + \frac{d^2}{16}$	9	Sphere	$I = M \cdot \frac{10}{q_5}$	$K^2 = \frac{d^2}{10}$
4	Thin rectangle board (c		$K^2 = \frac{a^2}{12}$	10	Thin disk	$I = M \cdot \frac{16}{q_5}$	$K^2 = \frac{d^2}{16}$
5	Rectangle board (cubin	to-rectangle) $I = W \cdot \frac{a^2 + b^2}{12}$	$K^2 = \frac{a^2 + b^2}{12}$	11	Concentrated load at	the top of a bar $\frac{\ell_2}{3} = W_1 \cdot \frac{\ell_1^2}{3} + W_2 \cdot K^2 + W_2 \cdot \ell_2^2$	Calculation using the shape of W ₂
6	Rectangle board (cubic	Frectangle) $\frac{a_1^2 + b^2}{12} + W_2 \cdot \frac{4a_2^2 + b^2}{12}$	$K^2 = \frac{4a_1^2 + b^2}{12} + \frac{4a_2^2 + b^2}{12}$				

ALLOWABLE LOAD MASS, ALLOWABLE LATERAL LOAD AND ROD DEFLECTION —

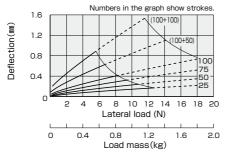
Load mass and rod deflection


In case of horizontal usage of the cylinder, deflection is generated in the rod due to a load mounted at the rod end. The relation between allowable load mass and deflection is shown in the graphs below. Applied load mass shall be within the range indicated by each solid line correspondent to each stroke length.



Lateral load and rod deflection

Under the condition that the cylinder is stopped the relation between deflection due to an external force (lateral load) acting temporarily on the rod and allowable load mass is shown in the graphs below. Applied lateral load shall be smaller than the value indicated by each broken line correspondent to each stroke length. If an external force acts on constantly, see the values of allowable load mass in the graphs.


CTW(X)25

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load (N)
25	0.50	11
50	0.41	10.4
75	0.35	8.6
(75+50)	0.27	6.3
(75+100)	0.22	5.0

Quotation () indicates (Stroke + Load Length)

CTW(X)32

Stroke (mm)	Allowable Load Mass (kg)	Allowable Lateral Load (N)
25	1.3	18
50	1.1	18
75	0.96	18
100	0.85	18
(100+50)	0.68	14.2
(100+100)	0.57	11.6

Quotation () indicates (Stroke + Load Length)

BEARING FOR FLOATING MECHANISM (Option Code FN)

In case where work installation fails due to incomplete location, defective parts, etc. and the work is bumped, the floating mechanism will prevent the work from damage by absorbing the shock.

Softening of impact force at work installation.

In case where an impact force due to actuator velocity may cause breakage of work or defective assembling at work installation, the floating mechanism will prevent the work from such damage by softening the impact force and help to achieve smooth work installation and press fit.

Work installation at different levels

In case where works are installed at the positions of different levels, only one actuator can perform the operation by setting floating stroke by level difference in advance.

•The bearing for floating mechanism incorporates the high precision and high rigidity ball spline.

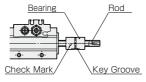
Prevention of damage when work installation fails Construction and application example

●As for the parts (parts marked * in the figure above) other than the bearing for floating mechanism, it is required to design and produce the construction and parts fitting with the machine at your side.

■MATTERS TO BE NOTED FOR DESIGNING

(1) Specific resistnace of Bearing

The bearing for floating mechanism has the specific resistance respectively. Pay attention to the setting load value of the spring.


(The spring force shall be determined from a viewpoint of the mechanism as a whole.)

- 1	Init:	NI

Model	Specific Resistance
CTW25	3
CTW32	3.5

2) Direction of Bearing key groove and check mark

The check mark means the digit indicated in the optional place on the outside of the bearing. The digit are optional and mean nothing. When the bearing is mounted to the rod. insert straight that the key groove of the bearing locates at the rod end side of actuator and the check mark at the body side of actuator. If it is inserted forcibly, the balls inside the bearing may come off.

3) Tolerance of the housing inside dia. for the bearing

Generally, the tolerance between the bearing for floating mechanism and the housing shall be by transition fit (J6). In case where accuracy is not so required, it shall be by loose fit (H7).

Tolerance of Housing	General Service Conditions	J6
Inside Dia.	Accuracy is not required	H7

(4) Combination of the bearing and the rod

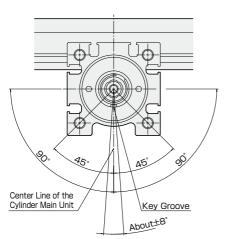
The bearing for floating mechanism and the rod are combinedly supplied. If other bearing, which is ordered additionally, attached to other actuator (including the part of the same specification), or purchased from somewhere afterward, is mounted to the rod, this may cause malfunction or poor accuracy. Be sure to use bearing attached to the actuator. The check mark (See clause 2 of this note.) on the bearing has nothing to do with the combination with rod. Even if the check mark on the bearing is the same, the combination of the bearing and the rod is another matter.

(5) Mounting of the bearing

The right figure shows a mounting example of the bearing for floating mechanism. Fixing strength in the axial direction is not so required, but only driving fit is not enought to hold and another measures shall be taken.

фdi

(6) Insertion of the bearing


When the bearing for floating mechanism is mounted, use a jig and not to tilt the cylinder to be parallel against the rod and insert carefully. φD

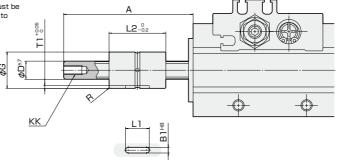
Model di D CTW(X)25 φ 7.0 *φ*15.5 CTW(X)32 φ 8.5 φ20.5

(7)Actual stroke of the actuator

The length of actuator stroke minus floating stroke is the stroke by which the work actually shifts. Be careful to select stroke.

Female Thread Rod End(KK)

Fastening Torque Unit: N·m

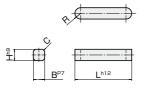

Model	Fastening Torque
CTW(X)25	1.7
CTW(X)32	4.8

Bearing Mass

Unit: g

Model	Mass
CTW(X)25	18
CTW(X)32	50

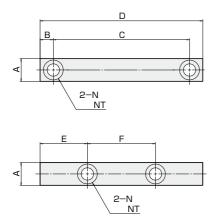
When the rotation angle is divided into two sections with the center line of the cylinder main unit, the key groove must be properly positioned within about $\pm 8^{\circ}$ to the center of the cylinder main unit. Carefully design the bearing holder.

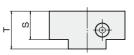

Unit: r

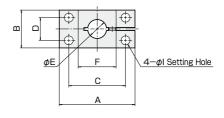
									OTHE IIII
Model	Α	В1	D	G	KK	L1	L2	R	Tl
CTW(X)25	55	2.5	φ8	φ16 -0.011	M4x0.7 depth8	10.5	25	0.5	1.2
CTW(X)32	65	3	φ10	φ21 -0.013	M5x0.8 depth10	13	33	0.5	1.5

Note 1: The rod protrudes longer than that of the standard type (A in the figure). Check the total length of the cylinder. For the details of the other dimensions, see pages 1012 to 1015.

Note 2: A bolt and washer to prevent the bearing from dropping are attached to the female thread (KK in the figure) for shipment. Remove the bolt and washer before using the cylinder. (The bolt and washer are not adhered.)


■DIMENSIONS of KEY (A KEY IS ATTACHED TO THE PRODUCT.)

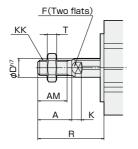

U	n	it	: 1	


Model	В	С	Н	L	R
CTW(X)25	2.5	0.5	2.5	10.5	1.25
CTW(X)32	3	0.5	3	13	1.5

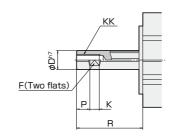
Option Code LB

Option Code ZT

For ZT(CT25), note that the outside dimensions (A in the figure) and work settling hole dimensions (C in the figure) have been changed corresponding to prior flange rod end ZS(CT25). ZT(CT32) is compartible with the prior type.

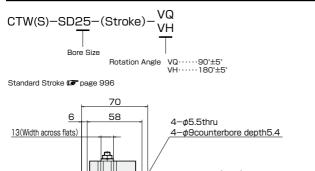

Option Code	Α	В	С	D	Е	F	I	S	Т
ZT(CT25)	33	17	26	10	φ8	19	ф3.6	11.3	15
ZT(CT32)	40	20	30	12	φ10	20	φ4.7	15	20

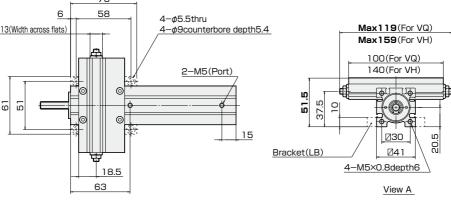
Female Thread Rod End

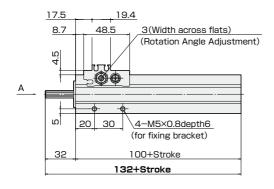

Option Code Α В С D Ε F N NT LB(CT25) 70 30 Ø5.5thru 6 58 20 LB(CT32) 12 72 86 25 36 Ø6.5thru

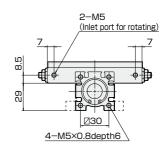
Male Thread Rod End

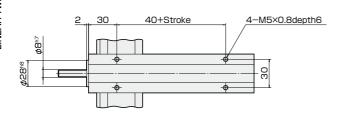
Option Code WT

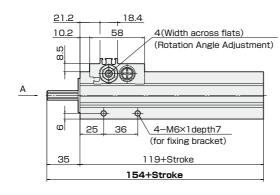


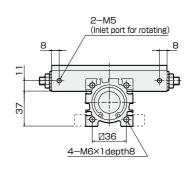

Option Code WS

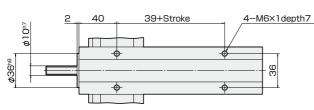



Model	Α	AM	D	F	R	K	KK	Т
CTW(X)25	14	12	8	7	32	4.5	M6×1	3.6
CTW(X)32	18	15.5	10	8	35	5	M8×1.25	5

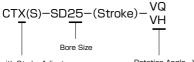

Model	D	F	R	K	KK	Р
CTW(X)25	8	7	32	4.5	M5×0.8 depth10	7
CTW(X)32	10	8	35	5	M6×1 depth12	7



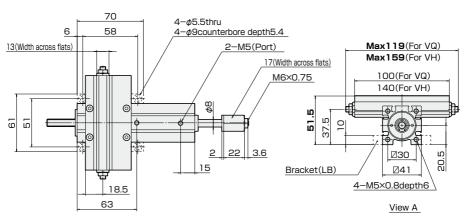

DIMENSIONS (mm) CTW32 STANDARD TYPE

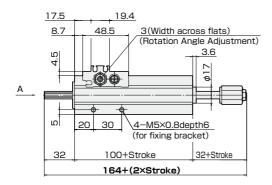

Standard Stroke F page 996 86 7 72 4-φ6.5thru 19(Width across flats) $4-\phi$ 10.5counterbore depth6.4 Max148(For VQ) Max200(For VH) 122(For VQ) 174(For VH) 2-M5(Port) 0 64 74 62 48 25 0 鐡 17 **Ø**36 Bracket(LB) **Ø**50 4-M6×1depth8 20.2

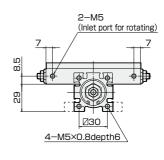
75

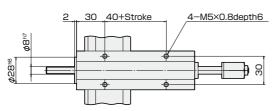


View A

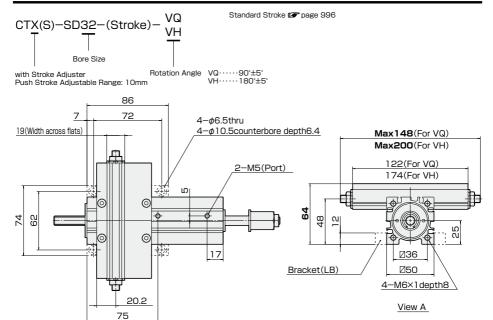

For the female thread rod end (WS), male thread rod end (WT), flange rod end (ZT), and bracket (LB), With bearing for floating mechanism page 1010, 1011

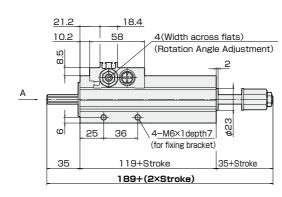


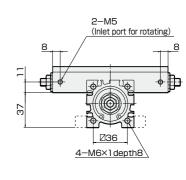


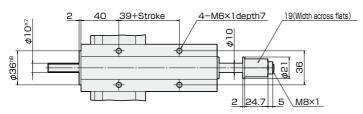

Rotation Angle VQ·····90°±5° with Stroke Adjuster Push Stroke Adjustable Range: 10mm VH·····180°±5°

Standard Stroke F page 996

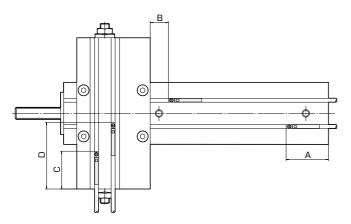







For the female thread rod end (WS), male thread rod end (WT), flange rod end (ZT), and bracket (LB), With bearing for floating mechanism rapage 1010, 1011

DIMENSIONS(mm) CTX32 STROKE ADJUSTER TYPE



For the female thread rod end (WS), male thread rod end (WT), flange rod end (ZT), and bracket (LB), With bearing for floating mechanism page 1010, 1011

■Switch Setting Position

RB(RC) 1, 2 Switch

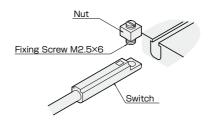
	Model	Switch Setting Position (mm)								
		^	В	С	D					
		Α	Ь	C	90°	180°				
	CTW(X)25	28	12	25	44	64				
	CTW(X)32	30	14	28	60	82				

RB(RC)4, 5 Switch

	Switch Setting Position (mm)						
Model	_	В	С	D			
	Α	В	C	90°	180°		
CTW(X)25	26	14	23	42	62		
CTW(X)32	28	16	26	58	80		

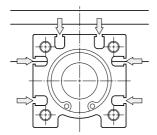
Hysteresis On Hold Distance

nysteresis, Ori noiu Distance un									
Model	Switch	RB(R	C)1,2	RB(RC)4, 5					
iviodei	Position	On hold distance(ℓ)	Hysteresis(c)	On hold distance(ℓ)	Hysteresis(c)				
CTW(X)25	Liner Motion Block	10		4					
	Rotary Motion Block	12	, ,	4	1				
CTW(X)32	Liner Motion Block	11	' '	4	'				
	Rotary Motion Block	1.4		45					

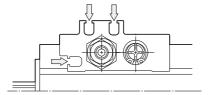

Explanation of hysteresis and on hold distance Page 1064

Installation of Switch

Assemble the fixing screw with a nut to the switch. Insert the switch into the groove.


After setting the position, fasten the screw by a screwdriver.

Fastening torgue of fixing screw must be 0.1 N·m.



■Switch Installation Position

Liner Motion Block(Six Positions)

Rotary Motion Block(Three Positions)

