Shock Absorber (Two-Stage Motion W Type)

2-step Motion W Type Irregular Multi-orifice/Analog-adjustable

W-A2M25(40) Series

Small and light analog adjustable 2-step motion shock absorbers of screwed type

- Shock absorbers whose energy absorption can be adjusted. They show the energy
 absorption characteristics of multi-orifice type in the first half of a stoke and those of
 single-orifice type in the second half.
- Since their outer surfaces are threaded, they can be handled easily in the same manner as when fitting bolts.
- Suitable for absorbing shock caused by air cylinder.

Specification

	Model number		W-A2M25N040SD
	Energy absorption range	J	12.7 to 63.7
	Stroke	mm	40
	Corresponding (equivalent) weight range	kg	350
(Note 1)	Max. energy capacity per minute	J/min	637
	Collision speed range	m/s	2 or less
(Note 3)	Max. resisting force	N	4900
(Note 2)	Rod returning force	N	71.4
(Note 2)	Rod return time	s	0.5
	Max. working cycle ti	mes/min	60
	Working temperature range	°C	-5 to +70 (No freezing)
	Weight	g	459 (FA accessory:129)

(Note 1) The max. energy capacity per minute shown in the table is the value at an ambient temperature of 26.7°C.

The max. energy capacity per minute E₂ (J/min) at an ambient temperature T (°C) is indicated by the following formula.

 $E_2 = \frac{(82.2 - T)}{55.5} \times \left(\begin{array}{c} \text{max. energy} \\ \text{capacity per minute} \\ \text{shown in table} \end{array} \right)$

(Note 2) Maximum value when rod is retracted a stroke of 40 mm.

(Note 3) Maximum resisting force obtained after the shock absorber is appropriately adjusted.