

10 MPa single acting uniform speed rod action 2-stage telescopic cylinders

- Single acting uniform speed telescopic cylinders
- 2-stage stroke cylinders require smaller installation space in the axial direction.
- Since the stages operate simultaneously, the rod end speed is uniform.
- Both stroke ends are provided with fixed cushions.
- The structure with high rigidity is suitable for lifting long articles.

Cylinder Specifications

Type	Type 15	Type 31	Type 47	Type 61	Type 77	Type 100	Type 127	Type 173	Type 245
Cylinder bore (mm)	φ63	φ90	φ110	φ125	φ140	φ160	φ180	φ210	φ250
Nominal pressure						10 MPa			
Maximum allowable pressure						Cap side: 10 MPa			
Proof pressure						Cap side: 14 MPa			
Minimum operating pressure						0.3 MPa			
Working speed range	20 to 333 mm/s	20 to 300 mm/s	20 to 280 mm/s	20 to 257 mm/s	20 to 250 mm/s		20 to 220 mm/s		
Working temperature range	Ambient temperature: -10 to +50°C Fluid temperature: -5 to +80°C (no freezing)								
Structure of cushioning	Fixed cushions at both ends								
Applicable fluid	Petroleum-based fluid (When using another fluid, refer to the table of fluid adaptability.)								
Tolerance for thread	JIS 6g/6H								
Tolerance of stroke	0 to 1000 mm	^{+7.8} _{+5.0}	1001 to 1600 mm	^{+8.2} _{+5.0}	1601 to 2500 mm	^{+8.6} _{+5.0}			
	2501 to 4000 mm	^{+9.0} _{+5.0}	4001 to 6300 mm	^{+11.3} _{+5.0}	6301 to 8900 mm	^{+13.0} _{+5.0}			
Mounting style	LA, FA, FB, CA, TA, TB								

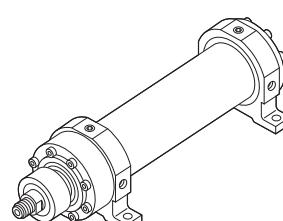
- For the calculation of cylinder force, refer to the page of calculation of cylinder force of TTC-1.

Rod End Load

Unit: N

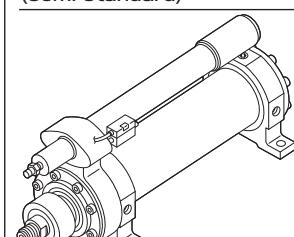
Type	Type 15	Type 31	Type 47	Type 61	Type 77	Type 100	Type 127	Type 173	Type 245
Rod end load	3750	7750	11750	15250	19250	25000	31750	43250	61250

Standard Stroke Range

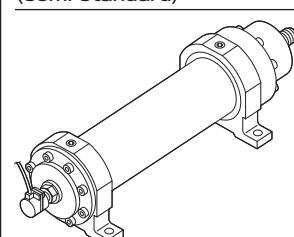

Unit: mm

Type	Type 15	Type 31	Type 47	Type 61	Type 77	Type 100	Type 127	Type 173	Type 245
Stroke	50 to 2900	50 to 4400	50 to 4800	50 to 5100	50 to 5400	50 to 5900	50 to 6800	50 to 7700	50 to 8900

- The above strokes indicate the maximum available strokes for the standard type.
- For the rod buckling, check with the buckling chart in the selection materials. Contact us for longer strokes.


Type of telesco® cylinders

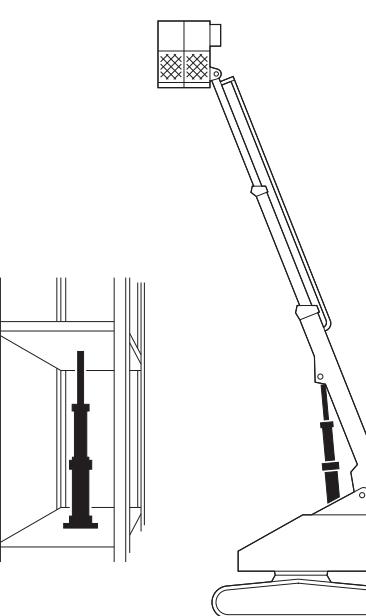
Standard type


Mounting style: LA, FA, FB, CA, TA, TB

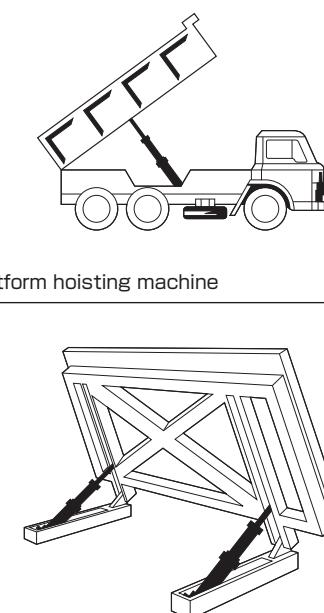
With telescopic rod sensor (semi-standard)

For detection of stroke end in the most extended state

With cap side stroke end sensor (semi-standard)



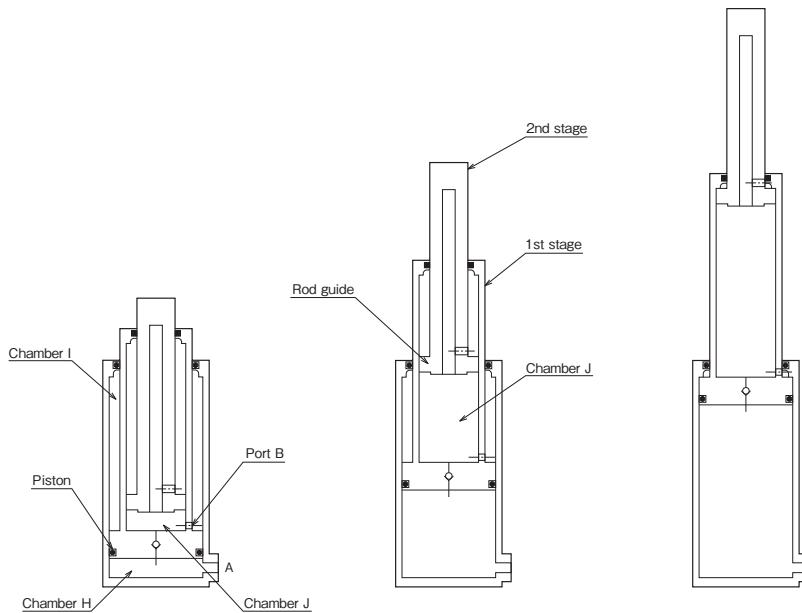
It can be fitted to all mounting styles except CA. For detection of the stroke end position in the most retracted state.


Cushion (fixed cushion)

- An orifice type attenuation mechanism (shock absorber) with a short stroke is used at both stroke ends.
- The cushions are not available to be adjusted.

Application examples TTC-1 Series single acting telescopic cylinders suitable for lifting

Platform hoisting machine


Building material hoisting machine

Adaptability of Fluid to Seal Material

Seal material	Applicable fluid		
	Petroleum-based fluid	Water-glycol fluid	Phosphate ester fluid
① Nitride rubber	○	○	×
② Fluorocarbon	○	×	○

Note) ○: Applicable ×: Inapplicable

Principle of Operation

Extension

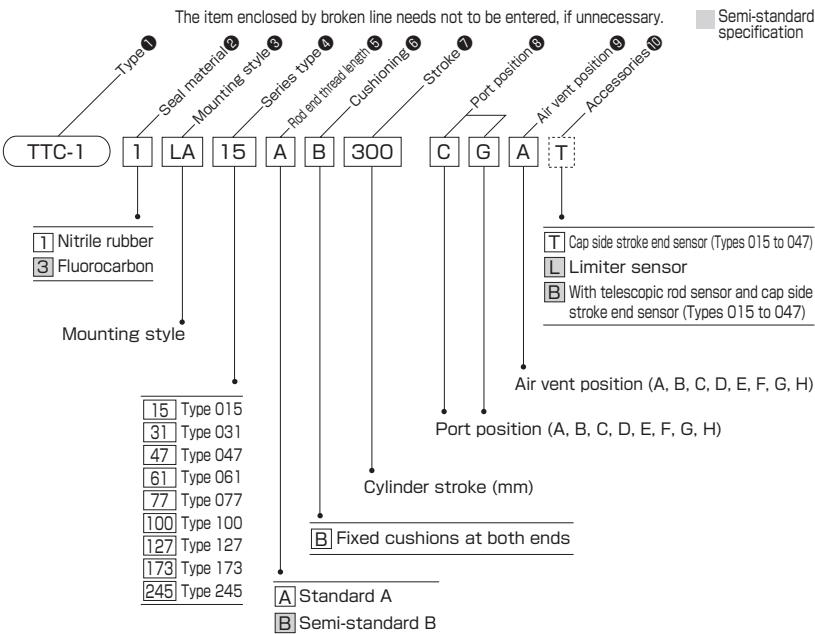
The hydraulic fluid flowing through port A enters chamber H and gives pushing force to the piston to actuate the 1st stage. At the same time, the hydraulic fluid in chamber I flows into chamber J through port B and gives pushing force to the rod to simultaneously actuate the 2nd stage.

Retraction

The rod is depressed by the end load to actuate the 2nd stage. At the same time, the hydraulic fluid in chamber J enters chamber I through port B and gives depressing force to the piston to simultaneously actuate the 1st stage. The fluid in chamber H is discharged from port A.

Weight Table

Type	Basic weight	Mounting accessory weight						Additional weight per mm of stroke	Moving part weight per mm of stroke	Unit: kg
		LA	TA	TB	FA	FB	CA			
Type 15	5.9	0.44	1.08	1.08	0.93	0.93	0.32	0.0101	2.3+0.0059xSt	
Type 31	15.7	1.25	3.06	3.06	2.85	2.85	0.91	0.0210	6.0+0.0120xSt	
Type 47	27.8	2.29	5.61	5.61	4.88	4.88	1.66	0.0286	13+0.0177xSt	
Type 61	41.9	3.52	8.64	8.64	7.43	7.43	2.56	0.0395	20.9+0.0229xSt	
Type 77	57.9	4.92	11.99	11.99	10.24	10.24	3.55	0.0522	32+0.0287xSt	
Type 100	81.2	6.8	17.1	22.9	15.18	8.9	3.95	0.0709	35+0.0377xSt	
Type 127	118.5	9.8	23.2	30.8	20.91	11.6	5.24	0.0933	52+0.0490xSt	
Type 173	180	15.2	36.9	49.7	36.07	21.2	9.07	0.1100	82+0.0657xSt	
Type 245	292	24	61.2	84.1	54.22	29.9	13.84	0.1750	135+0.0930xSt	


Note) The weight table is used to calculate the total cylinder weight. The moving part weight is used to calculate the total weight of the rod guide assembly and the ram tube piston assembly. (The values in the asterisked columns include the working fluid weight.)

Calculation example) TTC-1 Series, type 31, mounting style FB, stroke 1500 mm

$$\begin{aligned} \text{Cylinder weight (kg)} &= \text{basic weight} + \text{mounting accessory weight} + \text{stroke} \times \text{additional weight} \\ &= 15.7 + 2.85 + 1500 \times 0.0210 = 50.05 \text{ kg} \end{aligned}$$

$$\text{Moving part weight (kg)} = 6.0 + 0.0120 \times 1500 = 24 \text{ kg}$$

● How to order

★ Standard specifications

- Seal material Nitrile rubber
- Cushioning Fixed cushion on both ends (with orifice type attenuation mechanism)
- Port position, air vent position
- Mounting style: LA
- Port positions C⑥ Air vent position A
- Mounting style FA, FB, CA, TA, TB
- Port positions A⑤ Air vent position C

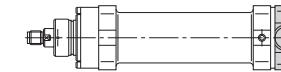
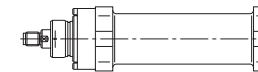
★ Rod end thread length (dimension A)

Piston rods with longer thread length (dimension A) can be manufactured according to semi-standard dimension B.

Rod end thread length (dimension A) Unit: mm

Type	Standard A	Semi-standard B
Type 15	20	40
Type 31	30	60
Type 47	35	75
Type 61	40	85
Type 77	47	95
Type 100	55	105
Type 127	61	120
Type 173	70	140
Type 245	95	165

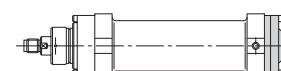
<Note>



- When a lock nut is required, contact us.

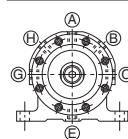
Mounting Style

[LA] LA style (side lugs)

[FB] FB style (cap flange)


[TB] TB style (cap flange)

[FA] FA style (rod flange)


[TA] TA style (rod trunnion)

[CA] CA style (cap eye)

★ Specification of port and air vent positions

Mounting style LA

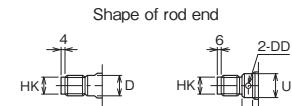
The standard port positions are ⑥ and ⑦, and the standard air vent position is ⑤. When modifying the positions, enter the symbol shown in the dimensional drawings.

Mounting style FA, FB, CA, TA, TB

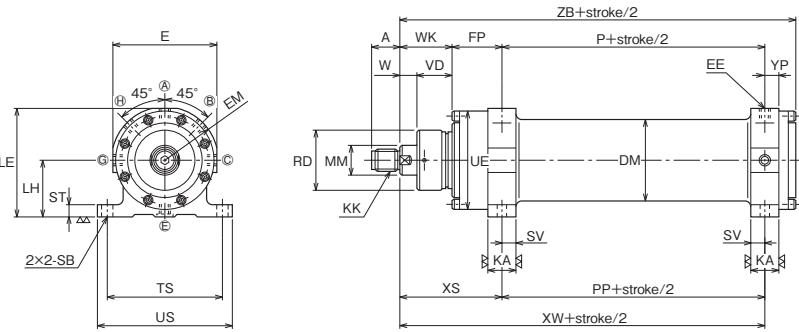
The standard port positions are ⑤ and ⑥, and the standard air vent position is ⑦. When modifying the positions, enter the symbol shown in the dimensional drawings.

[Note]

Locate the ports and air vent at a distance of 90° or 180° from one another.


This series of cylinders are produced by order. For the leadtime, contact us in each case.

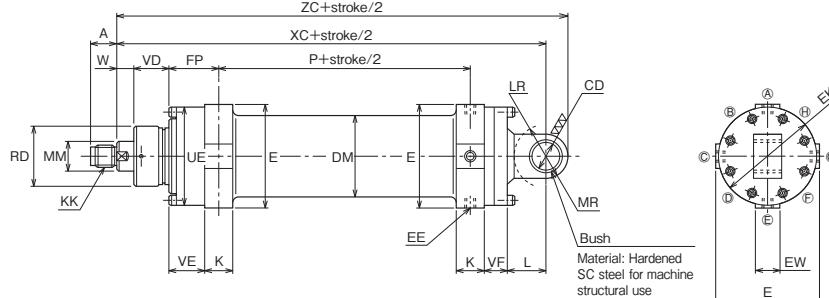
LA


TTC-1 1 LA Series type A B Stroke - C G A

Standard port positions : C G

Standard air vent position: A

Types 15 to 100 Types 127 to 245


- Dimension MM of the rod is a reference nominal dimension. Contact us for details.
- For the port of type 245, see the page of "Shape of port".

CA

TTC-1 1 CA Series type A B Stroke - A E C

Standard port positions : A E

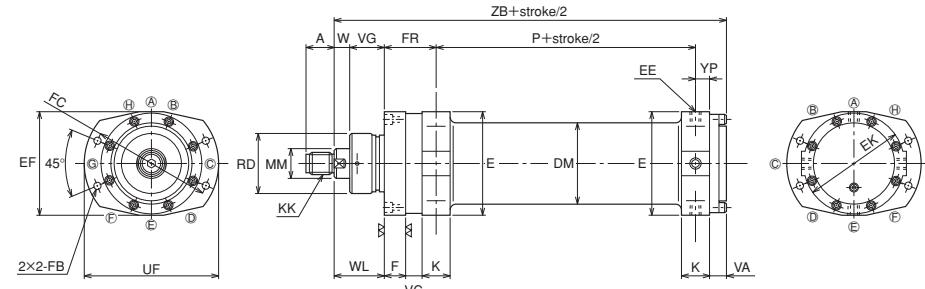
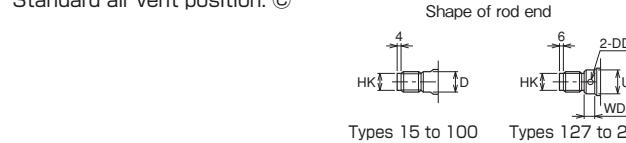
Standard air vent position: C

- Dimension MM of the rod is a reference nominal dimension. Contact us for details.
- For the port of type 245, see the page of "Shape of port".

Dimensional Table

Symbol Type	A	CD	D	DD	DM	E	EE	EK	EM	EW	FP	HK	
Type 15	20	φ25H10	30	—	φ73	98	Rc3/8	95	51	28 ⁰ ₋₁	48	φ27h9	
Type 31	30	φ35H10	46	—	φ105	138	Rc1/2	136	71	40 ⁰ ₋₁	67	φ42h9	
Type 47	35	φ45H10	56	—	φ125	158	Rc3/4	161	81	50 ⁰ ₋₁	80	φ53h9	
Type 61	40	φ55H10	65	—	φ145	178	Rc3/4	183	92	55 ⁰ ₋₁	93	φ60h9	
Type 77	47	φ60H10	75	—	φ165	196	Rc3/4	200	100	63 ⁰ ₋₁	107	φ68h9	
Type 100	55	φ65H10	85	—	φ190.7	225	Rc1	230	115	70 ⁰ ₋₁	120	φ76h9	
Type 127	61	φ70H10	—	—	φ12	254	Rc1	257	129	80 ⁰ ₋₁	143	φ86h9	
Type 173	70	φ85H10	—	—	φ15	290	Rc11/4	295	147	90 ⁰ ₋₁	169	φ101h9	
Type 245	95	φ100H10	—	—	φ15	298.5	340	40A	352	176	110 ⁰ ₋₁	203	φ120h9

Symbol Type	K	KA	KK	L	LE	LH	LR	MM	MR	P	PP	RD	SB	ST	SV
Type 15	26	26 ⁰ _{-0.1}	M30×2	35	99	50±0.2	R29	φ34	R22	25	25	φ59	φ13.5	10	13
Type 31	34	34 ⁰ _{-0.1}	M45×2	52	139	70±0.2	R44	φ50	R30	35	35	φ84	φ18	16	17
Type 47	42	42 ⁰ _{-0.1}	M56×2	64	164	85±0.2	R54	φ63	R38	40	40	φ100	φ22	20	22
Type 61	47	47 ⁰ _{-0.1}	M64×3	75	184	95±0.2	R64	φ71	R45	45	45	φ112	φ24	22	23
Type 77	48	48 ⁰ _{-0.1}	M72×3	81	203	105±0.2	R69	φ79	R50	50	50	φ128	φ26	24	23
Type 100	60	60 ⁰ _{-0.1}	M80×3	87	233	120±0.2	R74	φ90	R60	50	60	φ150	φ30	27	30
Type 127	66	66 ⁰ _{-0.1}	M90×3	94	262	135±0.2	R80	φ100	R65	55	65	φ166	φ33	30	33
Type 173	74	74 ⁰ _{-0.1}	M105×3	115	295	150±0.2	R99	φ116	R80	56	70	φ192	φ39	36	37
Type 245	84	84 ⁰ _{-0.1}	M125×4	133	350	180±0.2	R114	φ136	R90	73	80	φ230	φ45	42	42

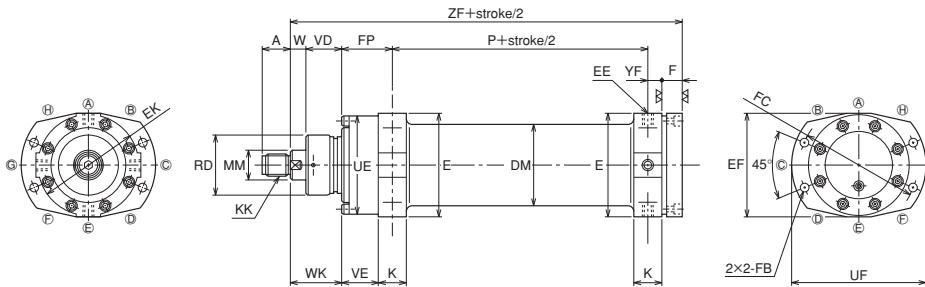


Symbol Type	TS	U	UE	US	VD	VE	VF	W	WD	WK	XC	XS	XW	YP	ZB	ZC
Type 15	110	—	φ89.5	130	43	35	23	17	—	60	204	108	133	13	160	226
Type 31	150	—	φ129	180	43	50	35	22	—	65	271	132	167	17	205	301
Type 47	175	—	φ155	210	50	60	42	25	—	75	321	155	195	20	240	359
Type 61	205	—	φ177	240	57	69	46	28	—	85	368	178	223	24	275	413
Type 77	230	—	φ193	270	65	82	51	30	—	95	409	202	252	25	308	459
Type 100	260	—	φ219	310	80	85	59	35	—	115	466	230	290	35	355	526
Type 127	295	φ99	φ248	350	90	105	66	43	28	133	529	271	336	38	409	594
Type 173	340	φ115	φ285	405	95	125	77	40	35	135	596	297	367	44	450	676
Type 245	400	φ135	φ335	480	108	154	86	39	35	147	684	343	423	42	515	774

FA

TTC-1 1 FA Series type A B Stroke - A E C

Standard port positions : A(E)

Standard air vent position: C


- Use a mount and mounting bolts of strength class of JIS8.8 or more.
- Dimension MM of the rod is a reference nominal dimension. Contact us for details.
- For the port of type 245, see the page of "Shape of port".

FB

TTC-1 1 FB Series type A B Stroke - A E C

Standard port positions : A(E)

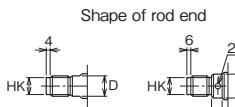
Standard air vent position: C

- Use a mount and mounting bolts of strength class of JIS8.8 or more.
- Dimension MM of the rod is a reference nominal dimension. Contact us for details.
- For the port of type 245, see the page of "Shape of port".

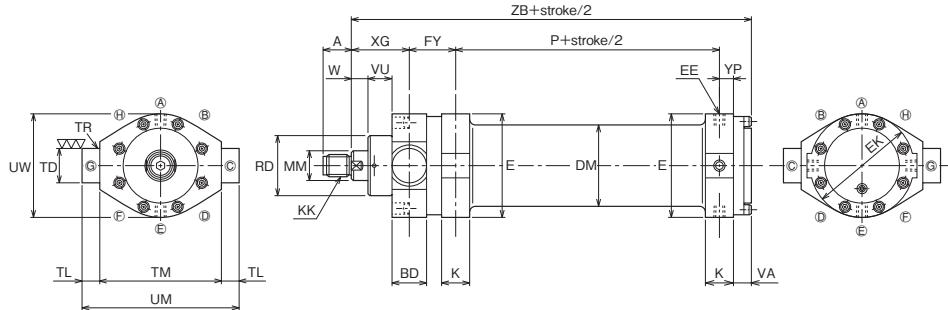
Dimensional Table

Symbol Type	A	D	DD	DM	E	EE	EF	EK	F	FB	FC	FD
Type 15	20	30	—	ø73	98	Rc3/8	98	95	20	ø9	ø120	20
Type 31	30	46	—	ø105	138	Rc1/2	138	136	30	ø13.5	ø170	30
Type 47	35	56	—	ø125	158	Rc3/4	165	161	35	ø16	ø195	35
Type 61	40	65	—	ø145	178	Rc3/4	190	183	40	ø18	ø225	40
Type 77	47	75	—	ø165	196	Rc3/4	205	200	45	ø20	ø245	45
Type 100	55	85	—	ø190.7	225	Rc1	235	230	48	ø22	ø290	35
Type 127	61	—	ø12	ø216.3	254	Rc1	260	257	56	ø24	ø320	40
Type 173	70	—	ø15	ø244.5	290	Rc1 1/4	300	295	68	ø30	ø380	46
Type 245	95	—	ø15	ø298.5	340	40A	350	352	77	ø33	ø440	50

Symbol Type	FP	FR	HK	K	KK	*MM	P	RD	U	UE	UF	VA
Type 15	48	48	ø27h9	26	M30×2	ø34	25	ø59	—	ø89.5	135	14
Type 31	67	67	ø42h9	34	M45×2	ø50	35	ø84	—	ø129	195	21
Type 47	80	80	ø53h9	42	M56×2	ø63	40	ø100	—	ø155	225	25
Type 61	93	93	ø60h9	47	M64×3	ø71	45	ø112	—	ø177	260	28
Type 77	107	107	ø68h9	48	M72×3	ø79	50	ø128	—	ø193	285	31
Type 100	120	123	ø76h9	60	M80×3	ø90	50	ø150	—	ø219	335	35
Type 127	143	146	ø86h9	66	M90×3	ø100	55	ø166	ø99	ø248	365	40
Type 173	169	174	ø101h9	74	M105×3	ø116	56	ø192	ø115	ø285	440	46
Type 245	203	205	ø120h9	84	M125×4	ø136	73	ø230	ø135	ø335	510	50


Symbol Type	VC	VD	VE	VG	W	WD	WK	WL	YF	YP	ZB	ZF
Type 15	15	43	35	43	17	—	60	60	17	13	160	170
Type 31	20	43	50	43	22	—	65	65	23	17	205	220
Type 47	25	50	60	50	25	—	75	75	30	20	240	260
Type 61	29	57	69	57	28	—	85	85	32	24	275	295
Type 77	37	65	82	65	30	—	95	95	33	25	308	330
Type 100	40	80	85	77	35	—	135	112	35	35	355	355
Type 127	52	90	105	87	43	28	133	130	38	38	409	409
Type 173	62	95	125	90	40	35	135	130	44	44	450	450
Type 245	79	108	154	106	39	35	147	145	42	42	515	515

TA

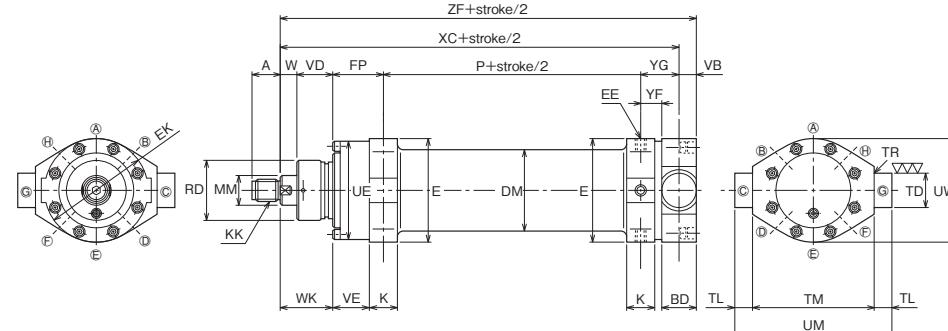

TTC-1 1 TA Series type A B Stroke - A E C

Standard port positions : A(E)

Standard air vent position: C

Types 15 to 100 Types 127 to 245

● Dimension MM of the rod is a reference nominal dimension. Contact us for details.


● For the port of type 245, see the page of "Shape of port".

TB

TTC-1 1 TB Series type A B Stroke - A E C

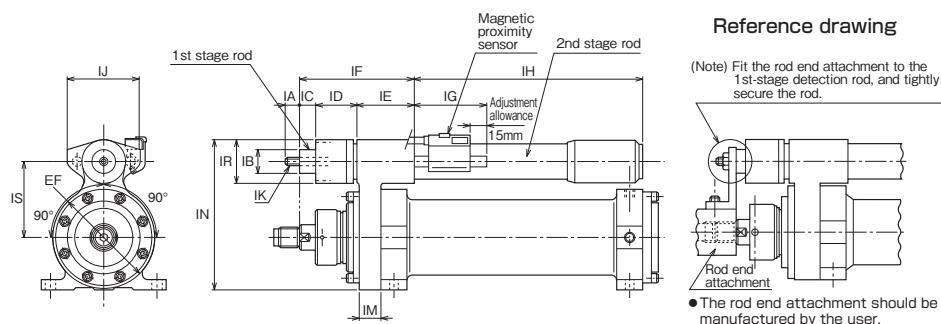
Standard port positions : A(E)

Standard air vent position: C

● Dimension MM of the rod is a reference nominal dimension. Contact us for details.

● For the port of type 245, see the page of "Shape of port".

Dimensional Table


Symbol Type	A	BD	D	DD	DM	E	EE	EK	FP	FY	HK	K
Type 15	20	31	30	—	φ73	98	Rc3/8	95	48	43	φ27h9	26
Type 31	30	38	46	—	φ105	138	Rc1/2	136	67	55	φ42h9	34
Type 47	35	48	56	—	φ125	158	Rc3/4	161	80	68	φ53h9	42
Type 61	40	58	65	—	φ145	178	Rc3/4	183	93	81	φ60h9	47
Type 77	47	63	75	—	φ165	196	Rc3/4	200	107	93	φ68h9	48
Type 100	55	68	85	—	φ190.7	225	Rc1	230	120	108	φ76h9	60
Type 127	61	74	—	φ12	φ216.3	254	Rc1	257	143	126	φ86h9	66
Type 173	70	89	—	φ15	φ244.5	290	Rc1 1/4	295	169	149	φ101h9	74
Type 245	95	105	—	φ15	φ298.5	340	40A	352	203	180	φ120h9	84

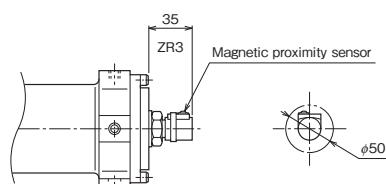
Symbol Type	KK	*MM	P	RD	TD	TL	TM	TR	U	UE	UM	UW
Type 15	M30×2	φ34	25	φ59	φ28e9	20	100 ⁰ _{0.35}	R3	—	φ89.5	140	95
Type 31	M45×2	φ50	35	φ84	φ35e9	25	145 ⁰ _{0.4}	R3	—	φ129	195	135
Type 47	M56×2	φ63	40	φ100	φ45e9	30	175 ⁰ _{0.4}	R3	—	φ155	235	160
Type 61	M64×3	φ71	45	φ112	φ55e9	30	200 ⁰ _{0.46}	R3	—	φ177	260	185
Type 77	M72×3	φ79	50	φ128	φ60e9	35	220 ⁰ _{0.46}	R3	—	φ193	290	205
Type 100	M80×3	φ90	50	φ150	φ65e9	45	250 ⁰ _{0.46}	R4	—	φ219	340	230
Type 127	M90×3	φ100	55	φ166	φ70e9	50	280 ⁰ _{0.52}	R4	φ99	φ248	380	257
Type 173	M105×3	φ116	56	φ192	φ85e9	60	320 ⁰ _{0.57}	R4	φ115	φ285	440	295
Type 245	M125×4	φ136	73	φ230	φ100e9	70	380 ⁰ _{0.57}	R4	φ135	φ335	520	350

Symbol Type	VA	VB	VD	VE	VU	W	WD	WK	XC	XG	YF	YG	YP	ZB	ZF
Type 15	14	16	43	35	32	17	—	60	165	65	17	32	13	160	181
Type 31	21	20	43	50	35	22	—	65	210	77	25	43	17	205	230
Type 47	25	25	50	60	37	25	—	75	245	87	27	50	20	240	270
Type 61	28	30	57	69	39	28	—	85	285	97	34	62	24	275	315
Type 77	31	32	65	82	47	30	—	95	320	109	37	68	25	308	352
Type 100	35	35	80	85	57	35	—	115	353	127	35	68	35	355	388
Type 127	40	38	90	105	69	43	28	133	405	150	38	74	38	409	443
Type 173	46	46	95	125	69	40	35	135	447	155	44	87	44	450	493
Type 245	50	53	108	154	78	39	35	147	517	170	42	94	42	515	570

Semi-standard/With telescopic rod sensor (for detection of position in most extended state)

The sensor can be fitted to types 15, 31 and 47 of any mounting style.

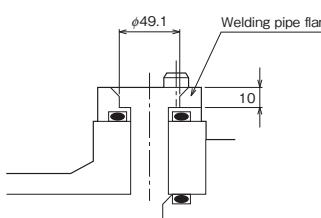
Maximum Stroke

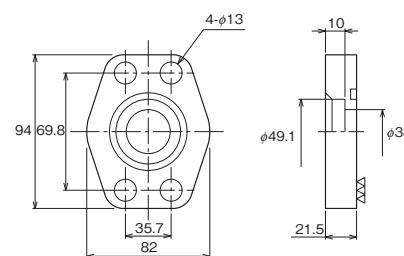

	Horizontal form	Vertical form
Type 15	1300	2000
Type 31	2200	3300
Type 47	2200	3300

- The standard sensor type is SR101. When using another sensor, specify the sensor type. However, only SR type sensors can be used. (For the sensor specifications, refer to the sensor specification column at the end of this catalog.)
- The telescopic rod angle and the sensor position can be changed to the right and left. (90° only in the case of LA)

Symbol	EF	IA	IB	IC	ID	IE	IF	IG	IH	IR	IJ	IK	IM	IN	IS
Type 15	MAX.106	20	25±0.1	20	47	60	127	85	(Stroke-66)/2+66	42	MAX.74	M8×1.25	27	MAX.147	75±0.2
Type 31	MAX.142	30	37±0.1	8	54	105	167	85	(Stroke-86)/2+70	52	MAX.86	M10×1.5	35	MAX.199	100±0.2
Type 47	MAX.172	35	37±0.1	18	54	105	177	85	(Stroke-86)/2+70	52	MAX.86	M10×1.5	35	MAX.229	115±0.2

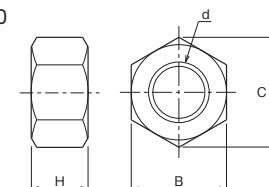
Semi-standard/cap side stroke end sensor (for detection of backward limit) Patent registered


It can be fitted to all mounting styles except CA.

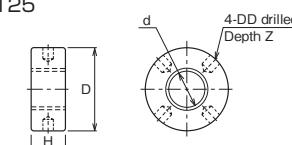

- For the sensor specifications, refer to the sensor specification column at the end of this catalog.
- All types from 15 to 245 have the same dimensions.

Shape of port

- Shape of port



- Shape of welding pipe flange



Lock nut

M30 to M90

M105 to M125

M30 to M90

Symbol	d	M30×2	M45×2	M56×2	M64×3	M72×3	M80×3	M90×3
B	46	70	85	95	105	115	130	
C	53.1	80.8	98.1	110	121	133	150	
H	18	27	34	38	42	48	54	

M105 to M125

Symbol	d	M105×3	M125×3
D	φ 160	φ 190	
DD	φ 15	φ 15	
H	63	72	
Z	18	18	

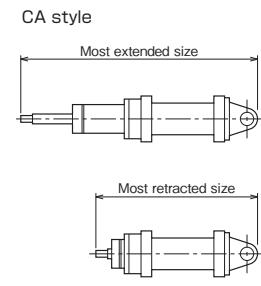
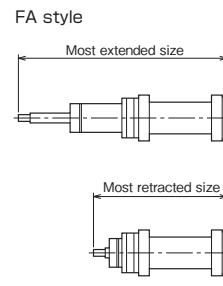
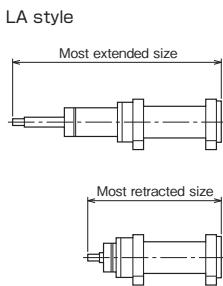
Calculation of cylinder stroke and most retracted size

The cylinder stroke and most retracted size can be calculated from the most extended size of a telescopic cylinder.

Calculation formula

(Most extended size-Fixed length)/3+(Fixed length)

=Most retracted size (mm)




(Most retracted size-Fixed length)×2

=Cylinder stroke (mm)

Fixed Length Unit: mm

Mounting style Type	LA·FA·TA	FB	TB	CA
Type 15	180	190	201	246
Type 31	235	250	260	331
Type 47	275	295	305	394
Type 61	315	335	355	453
Type 77	355	377	399	506
Type 100	410	410	443	581
Type 127	470	470	504	655
Type 173	520	520	563	746
Type 245	610	610	665	869

The fixed length is obtained by subtracting the stroke/2 from the maximum external size of the cylinder in the retracted state.

● In the case of mounting style FB, TA or TB, calculate the size in the same method.

Single Acting Uniform Speed 2-stage
Telescopic Cylinder

Calculation of cylinder force

Cylinder force

$$F=A \times P \times \beta (N)$$

A: Effective sectional area (mm²)
P: Set pressure (MPa) β : Load rate

The actual cylinder output should be determined in consideration of the resistance of cylinder sliding sections and the pressure loss of the piping and equipment.

The load rate refers to the ratio of the actual force applied to the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. Generally, the load rate should be in the following range.

- When the inertia force is low : 60 to 80%
- When the inertia force is high : Around 50%

For the calculation examples shown in this catalog, a load rate of 80% is used.

<Example>

Determine the cylinder force obtained when type 15 single acting telescopic cylinder is used at a set pressure of 10 MPa.

<Answer>

Cylinder force (N)

$$= \text{Set pressure (MPa)} \times \text{Effective sectional area (mm}^2\text{)} \times \text{Load rate}$$

$$= 10 \times 1559 \times 0.8$$

$$= 12472 (N)$$

<Example>

Determine the type of single acting telescopic cylinder to be used to lift a load of 25000 N vertically 2500 mm at a set pressure of 10 MPa. Also, determine the cylinder force in this case.

<Answer>

Required effective sectional area (mm²)

$$= \frac{\text{Load (N)} / \text{Load rate}}{\text{Set pressure (MPa)}}$$

$$= \frac{25000 / 0.8}{10}$$

$$= 3125 (\text{mm}^2)$$

Temporarily select type 31 based on the effective sectional area.

Then, obtain the sum of the load and the cylinder moving part weight as the total load, and confirm that type 31 is applicable to the load.

Required effective sectional area (mm²)

$$= \frac{\text{Load (N)} + \text{Moving part weight (N)} / 0.8}{\text{Set pressure (MPa)}}$$

$$= \frac{[25000 + 9.81 \times (6.0 + 0.0120 \times 2500)] / 0.8}{10}$$

$$= 3169 (\text{mm}^2) < 3181 (\text{mm}^2)$$

Therefore, type 31 is usable.

Cylinder force (N)

$$= \text{Set pressure (MPa)} \times \text{Effective sectional area (mm}^2\text{)} \times \text{Load rate}$$

$$= 10 \times 3181 \times 0.8$$

$$= 25448 (N)$$

How to read the buckling chart

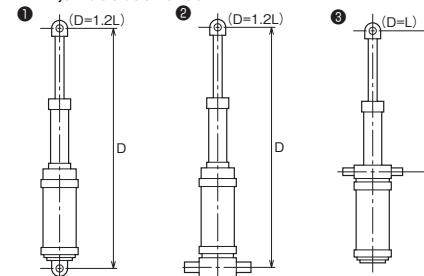
- How to determine the max. working load according to the telescopic cylinder type

1. Determine in which condition the telescopic cylinder is mounted among ① to ⑨ shown below.

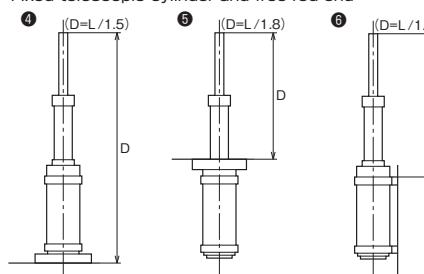
2. After determining the mounting condition, obtain the value L for the condition.

3. Determine the max. working load according to the value L and the telescopic cylinder type from the buckling chart.

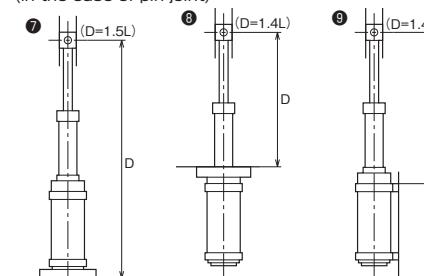
- How to determine the max. stroke according to the telescopic cylinder type


1. Determine in which condition the telescopic cylinder is mounted among ① to ⑨ shown below.

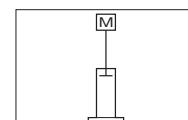
2. Determine the value L according to the max. working load and the telescopic cylinder type from the buckling chart.


3. After the mounting condition is determined, the stroke can be determined from the value L.

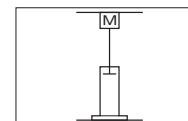
- Mounting conditions of telescopic cylinder


- Pin joint at both ends

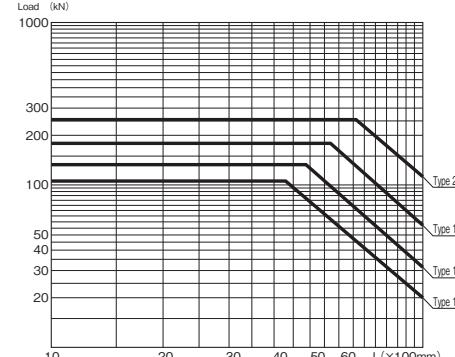
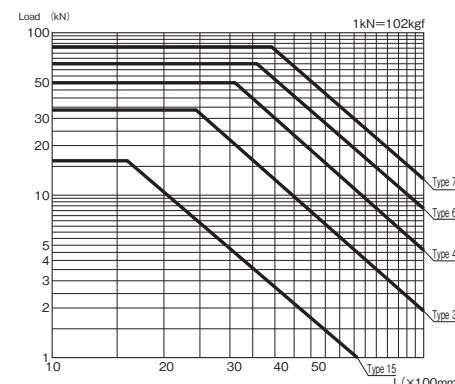
- Fixed telescopic cylinder and free rod end


- Fixed telescopic cylinder and rod end guide (in the case of pin joint)

Notes on rod buckling


Before calculating the rod buckling, it is necessary to examine the method of stopping the cylinder. There are two ways to stop a cylinder: the cylinder stopping method, where the cylinder is stopped at the cylinder stroke end, and the external stopping method, where the cylinder is stopped by an external stopper. The way of determining the load varies depending on the method.

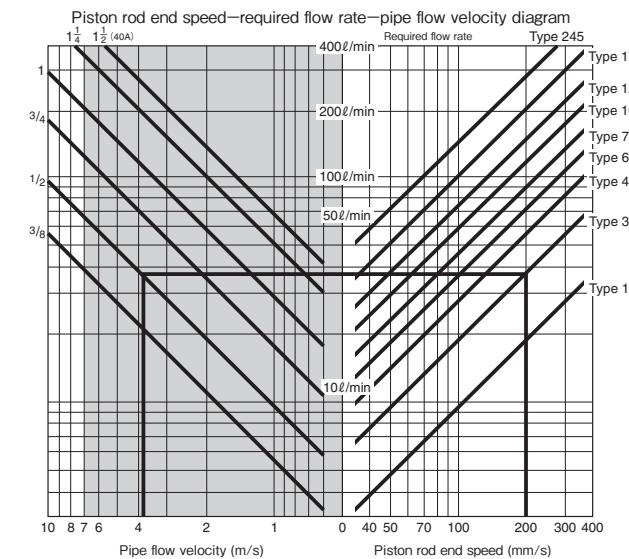
- Way of determining the load in the case of cylinder stopping method



The cylinder is stopped at the stroke end as shown in the figure. Determine the load necessary for buckling calculation as stated below.
Load = M·g
g: Acceleration of gravity 9.8 m/s²

- Way of determining the load in the case of external stopping method

The cylinder is stopped in the middle by an external stopper as shown in the figure. In this case, the load necessary for buckling calculation is not W, but the theoretical cylinder force (Set relief pressure (MPa) × Piston effective sectional area (mm²)).

Buckling Charts

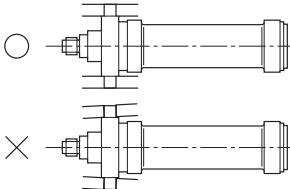

Confirmation of port diameter according to piston rod end speed

The piston rod end speed depends on the amount of fluid flowing into the cylinder. Therefore, it is necessary to confirm that the standard port diameter is appropriate to the amount of fluid. The piston rod end speed V is determined by the following formula.

$$V = 1.67 \times 10^4 \times Qc/A \text{ (mm/s)}$$

Qc: Amount of fluid supplied into cylinder (l/min)
A: Piston effective sectional area (mm²)

The following diagram shows the relationship between speed and required flow rate for each size of single acting telescopic cylinder and the relationship between required flow rate and pipe flow velocity for each port diameter.

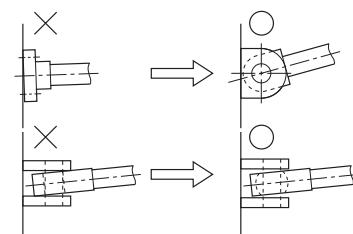

Telescopic Cylinder Port Diameter

Series	Type 15	Type 31	Type 47	Type 61	Type 77	Type 100	Type 127	Type 173	Type 245
Port dia.	Rc ³ / ₈	Rc ¹ / ₂	Rc ³ / ₄	Rc ³ / ₄	Rc ³ / ₄	Rc ¹	Rc ¹	Rc ¹ / ₄	40A

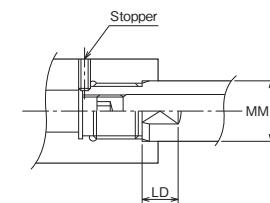
- In the usable range, the pipe flow velocity is less than 7 m/s. Normally, when the pipe flow velocity exceeds 7 m/s, the piping resistance and the pressure loss are increased, and, as the result of this, the output is decreased when the cylinder operates, and the speed is reduced.
- When the pipe flow velocity exceeds 7 m/s, use two ports.
- To use the cylinder at the nominal speed in a retracted state, the discharge flow rate should be less than 3.5 m/s.

Precautions for use

- These cylinders are of the single acting type. In the contracting direction, the cylinders operate with their own weight and the rod end load. These cylinders are delivered after they are filled with a working fluid (petroleum-based fluid equivalent to ISO VG32).
- Discharge air sufficiently.
- Do not apply load to the ram tube end at the 1st stage. Doing so may cause operation failure.
- Avoid applying side load to the rod during use. Doing so can cause operation failure or damage the cylinder. If side load is applied, provide guides, or protect the rod end threads. In such a case, consult us.
- If the cylinder is used frequently in the middle of the stroke, it may not be able to operate full stroke for reasons of the cylinder structure. Occasionally operate the cylinder to the contracting stroke end. Then, it will automatically correct the end position.
- These cylinders have a stroke allowance of 5 mm at the 2nd stage in addition to the specified stroke. Therefore, when the load is smaller for the working pressure, the cylinder may work for the allowance after operating the specified cylinder stroke.
- For reasons of the principle of the operation, the cylinder stroke may become a minus value (Up to about $stroke \times 0.3\%$). If it is required to obtain the specified accuracy at the stroke end, provide the cylinder with an excess stroke, and take measures, such as an external stopper.
- Correctly center the rod axis in the load moving direction. Incomplete centering can cause operation failure and damage the cylinder.
- In the case of mounting style TA, TB or CA, center the rotating axis and the mating mount.
- Correctly fit the mounting bracket of mounting style TA or TB as shown below.


- When using any of these cylinders horizontally, consult us.
- Ensure that the mounting block has a sufficient rigidity to prevent occurrence of deflection from the cylinder thrust force.
- Use mounting bolts of strength class of JIS8.8 or more. For the tightening torque, see the following table.
- Incomplete tightening can cause looseness and damage of the bolts.

Tightening Torque Table


Unit: N·m

Thread dia.	Strength class	M8	M10	M12	M14	M16	M18	M20	M22	M24
Tightening torque	10.9	36	72	125	198	305	420	590	800	1020
	8.8	25	51	89	141	216	290	410	560	720

- Take care that eccentric load is not applied to the piston rod when connecting the rod end attachment and load.
- As a rod end attachment, the rod eye (T-end), rod eye with spherical bearing (S-end) and rod clevis (Y-end) are recommended as a rule. When using another rod end attachment, consult us.

- The rod is made from a hollow pipe. Therefore, when fitting a rod end attachment, provide a stopper on the spigot (4 mm) of the thread end as shown in the figure.
- If side load may be applied, connect the rod as a spigot joint as shown in the figure to protect the neck. In this case, specify dimension LD of the spanner fitting part and dimension W. (Semi-standard)

* Dimension MM of the rod is a reference nominal dimension. Contact us for details.

Notes on piping

- Before connecting the piping, flush the inside of the piping.
- When connecting with a rubber hose, do not bend the hose at an angle less than the specified radius.
- Take care that air is not collected in the middle of the piping.