Space-saving non-lubrication type magnetic rod-less cylinders

- Large holding force
- Requiring about half the installation space of conventional cylinder
- Separable type convenient for maintenance Installation in any of vertical and horizontal directions
- Guided cylinders come in two types of guide structure, general purpose and high-accuracy types.
- No lubrication (Cylinders with stroke of 1,000 mm or more must be lubricated.)

Cylinder Specifications

Model		Standard type	With	guide				
Туре		Standard type	Standard type Switch Set					
Cylinder bore (mm)		φ10•φ16•φ20•φ25•φ32•φ40						
Working fluid			Air					
Lubrication		Unnecessary (Cylinders	with strokes of 1000 mm or	more must be lubricated.)				
Working pressure	Н	0.15 to 0.7 MPa	0.2 to 0	.7 MPa				
range	М	0.15 to 0.45 MPa	0.2 to 0.45 MPa					
Proof test pressure		1.03 MPa						
Working speed range	Э		100 to 500 mm/s					
Working temperature (Ambient/fluid temperature		_	10 to +70°C (No freezin	g)				
Structure of cushioni	ng	φ10 to φ25: With shock absorbing pad φ32•φ40 : With cushions on both ends	_	_				
Tolerance for thread		JIS 6H/6g						
Installing direction		Free						
Guide type		General purpose type (slide bearing) ● High-accuracy type (linear bearing)						
Accessory		_	● With shock absorber					

Specifications for Cylinders with Shock Absorber

Item Bore	φ10•φ16	φ20•φ25	φ32•φ40		
Model number	A2M12N010	A2M16N012	A2M20N016SD		
Stroke (mm)	10	12	16		
Max. absorbed energy J	2.94	7.85	25.5		
Max. equivalent weight	30 kg	50 kg	200 kg		
Max. energy capacity per min	98.1	235	343		

Stroke Range	Unit: mn

Bore Stroke	Possible stroke range				
φ10	50 to 500				
φ16	50 to 1000				
φ20	50 to 1500				
φ25•φ32•φ40	50 to 1800				

Magnetic holding force Unit: N											
Cylinder bore (mm)	φ10	φ16	φ20	φ25	φ32	φ40					
H type	53.9	147	265	431	637	1030					
M type	_	_	_	245	373	608					

- Cylinders with bores of 10, 16 and 20 mm come only in H type.
- In the case of a Switch Set Cylinder, when the sensor is installed at the intermediate position, the cylinder max. speed must be less than 300 mm/s for reasons of the response speed of the load relay. (Note) Cylinders with stroke of 1000 mm or more must be lubricated.

 With absorbed energy adjusting mechanism

Product Lineup						L	Jnit: mm	I
Series Variations	Type	φ 10	φ16	φ20	ø 25	φ32	 \$40	obac
General purpose type	Standard type	•	•	•	•	•	•	Co-saviil & Fi calliatic Ch
General purpose	Standard type	•	•	•	•	•	•	1
With guide	Switch Set	•	•	•	•	•	•	Ī
#igh-accuracy	Standard type	•	•	•	•	•	-	
type	Switch Set	•	•	•	•	•	•	

Wei	Veight Table Unit: kg													
	Standa	ard type		With guide										
Bore	Basic weight		В	asic weigl	nt	Additional v	weight per m	m of stroke		Additional weight				
(mm)	Standard	weight ner mm of	Standard	With s	ensor	Standard	rd With sensor		Shock	G/H type sensor		SR type sensor		
	type	stroke		G/H type	SR type	type	G/H type	SR type	absorber	Cord lentgh 1.5 m	Cord lentgh 5 m	Cord lentgh 1.5 m	Cord lentgh 5 m	
φ10	0.11	0.00027	1.35	1.40	1.37	0.0015	0.0019	0.0016	0.04	0.028	0.087	0.105	0.263	
φ16	0.25	0.00042	1.91	1.96	1.93	0.0022	0.0026	0.0023	0.04	0.028	0.087	0.105	0.263	
φ20	0.50	0.00080	3.17	3.23	3.19	0.0040	0.0044	0.0041	0.10	0.028	0.087	0.105	0.263	
φ25	1.30	0.0010	6.15	6.22	6.17	0.0059	0.0063	0.0060	0.10	0.028	0.087	0.105	0.263	
φ32	2.10	0.0017	7.34	7.41	7.36	0.0066	0.0070	0.0067	0.19	0.028	0.087	0.105	0.263	

Note) • The weight of guided cylinder with sensor shown in the above table does not include the weight of the sensor.

12.43 | 0.0098 | 0.0102

3.40

0.0021

12.40

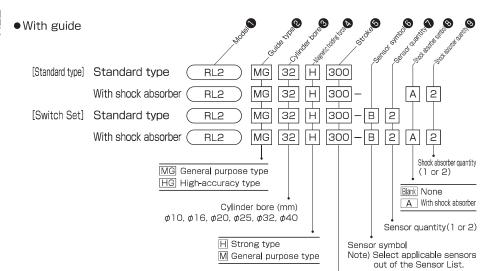
12.49

 ϕ 40

Calculation formula Oylinder weight (kg)=basic weight+(cylinder stroke (mm)×additional weight per mm of stroke)+(sensor additional weight×sensor quantity)+(shock absorber additional weight+shock absorber quantity)

0.0099

0.19


0.028

0.087

Calculation example RL2, guided, bore ϕ 32, cylinder stroke 500 mm, 2 pcs of GS101 (cord length 1.5 m), 2 shock absorbers $7.41+(0.0070\times500)+(0.028\times2)+(0.19\times2)=11.346$ kg

How to order

Standard 25 SD H-300 Standard type RL2 Cylinder stroke (mm) Cylinder bore (mm) φ10, φ16, φ20, φ25, φ32, φ40 H Strong type M General purpose type

How to order when not requiring sensor

RL2 MG32H-300-00

00 : SR type sensor 99:G*/H* type sensor

(However, a sensor mounting rail is provided.)

Note) The mounting rail and magnet assembly designed for SR type sensor and those designed for GR, GS, HR and HS type sensors are available.

Stroke Range

Bore	Possible stroke range
φ10	50 to 500
φ16	50 to 1000
φ20	50 to 1500
φ25•φ32•φ40	50 to 2000

□ Delivery state

• The product will be delivered without shock absorber mounted,

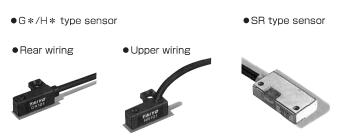
Note on ordering Switch Set Sensors are not mounted

on cylinders at delivery.

Cylinder stroke (mm)

•SR type sensors with improved waterproofness (with 5m long cord) can be fabricated.

Sensor List


Semi-standard

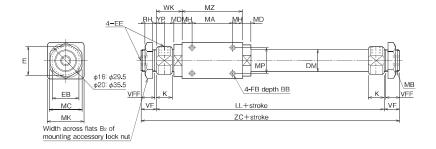
Туре	Sensor symbol	Load voltage range	Load current range	Max. sensoring capacity	Protective circuit	Indicating lamp	Wiring method	Cord length	Applicable load	
	B GR101						0.3 mm ² , 2-core, outer dia. φ3.4 mm,	1.5 m		
'n	C GR105	DC: 5 to 50V	DC: 3 to 40 mA	DC: 1.5 W	None	LED (Lights in red	rear wiring	5 m	Small relay, programmable controller	
sensor	J HR101	AC: 5 to 120V	AC: 3 to 20 mA	AC: 2 VA			0.3 mm², 2-core, outer dia. φ3.4 mm,	1.5 m		
Reed s	K HR105					0,	upper wiring	5 m		
Re	S SR405	AC: 80 to 220 V	300 mA	30 VA	Provided	Neon lamp (Lights when not sensing)	0.5 mm², 2-core, ourter dia. φ6 mm, rear wiring	5 m	Small relay, programmable controller	
Isor	M GS211						0.3 mm ² , 2-core, outer dia. φ3.4 mm,	1.5 m		
e ser	N GS215	DC: 10 to 30 V	6 to 70 mA	_	Provided	ded (2-LED type	rear wiring	5 m	Small relay, programmable controller	
Solid state sensor	W HS211	DG. 10 10 30 V	0 to 70 mA	_	Fiovided		0.3 mm ² , 2-core, outer dia. φ3.4 mm,	1.5 m		
Solic	Y HS215						upper wiring	5 m		

Notes) • For the sensors without a protective circuit, be sure to provide a protective circuit (SK-100) with the load when using any induction load (relay, etc.).

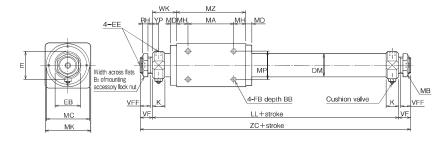
- For handling of sensors, be sure to see the sensor specifications at the end of this catalog.
- We recommend AND Unit (AU series) for multiple sensors connected in series. For details, refer to AND Unit at the end of this catalog.

Rodless Cylinder (Magnet Type)

AA 251


CAD/DATA RL2/TRL2 is available.

Standard type


Bore *φ* 10

•Bore ϕ 16 and ϕ 20

• Bore ϕ 25, ϕ 32, and ϕ 40

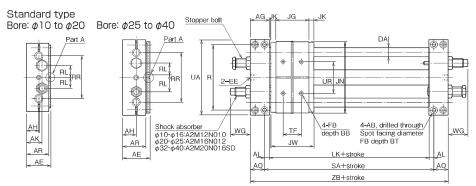
•25-mm bore cylinders are not provided with a cushion valve.

Dimensional Table

Unit: mm

Symbol	B ₂	ВВ	DM	E	EB	EE	FB	К	LL	MA
φ10	14	4.5	φ12	14	_	M5×0.8	M3×0.5	11	70	20
φ16	22	6	φ18	φ21	19	M5×0.8	M4×0.7	11	84	26
φ20	30	6	φ23	φ28	26	Rc1/8	M4×0.7	15	110	40
φ25	30	10	φ28	φ33	31	Rc1/8	M5×0.8	16	143	52
φ32	32	10	φ36	φ40	38	Rc1/8	M6×1	16	165	66
φ40	41	10	φ44	φ48	46	Rc1/4	M6×1	20	174	70

Rodless Cylinder (Magnet Type)


Symbol	МВ	МС	MD	МН	MK	MP	MZ	RH	VF	VFF	WK	YP	ZC
φ10	M10×1	22	4	7.5	□25	16	35	3	9	8	17.5	5.5	88
φ16	M16×1.5	27	7	9	□30	20	44	6	12	9.5	20	5.5	108
φ20	M22×1.5	33	8	10	□36	26	60	7	15	10.5	25	8	140
φ25	M22×1.5	φ57	8	12	□58	36	76	7	15	12	33.5	8	173
φ32	M24×2	φ61	8	17	□62	40	100	8	16	13	32.5	8	197
φ40	M30×2	φ77	10	15	□78	50	100	9	16	12	37	10	206

Note) Dimension VFF is the effective length of threaded portion.

CAD/DATA RL2/TRL2 is available.

With guide

RL2 Guide structure Bore Magnetic holding force Stroke Shock absorber symbol Number of shock absorbers

Details of part A (dimensions of key groove)

Dimensional Table

Symbol	b	t
φ10•φ16•φ20	3 <u>-0.004</u> 0.029	1.8 +0.1
φ25•φ32•φ40	4 _0.03	2.5 +0.1

Procedures for adjusting the stroke of cylinder with shock absorber

Bore ϕ 10 to ϕ 25

• Adjust the stroke with the stopper bolt. Take care that the slider does not get into direct contact with the shock absorber end face.

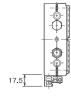
Bore ϕ 32 and ϕ 40

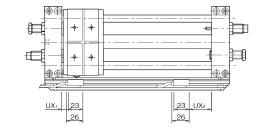
- Adjust the stroke by screwing the shock absorber. (The stroke can be adjusted on the shock absorber end face.)
- Above shown is the outline drawing of a cylinder with a shock absorber.
- The basic style 32 and 40mm bore cylinders with a shock absorber are not provided with a stopper bolt,

Dimensional Table

Symbol	AB	AE	AG	АН	AK	AL	AO	AR	BB	ВТ	DA	EE	FB
φ10	φ4.5	34	28	18	21	7	21	32	8	4.5	φ10	M5×0.8	M4×0.7
φ16	φ5.5	39	30	20.5	24.5	7.5	22.5	36	10	5.5	φ12	M5×0.8	M5×0.8
φ20	ϕ 6.6	45	35	23	29	9	26	42	10	6.6	φ16	Rc1/8	M5×0.8
φ25	φ9	58	44	29.5	_	11	33	54	12	8.7	φ20	Rc1/8	M6×1
φ32	φ9	63	44	32	_	11	33	54	16	8.7	φ20	Rc1/8	M8×1.25
φ40	φ9	78	44	39.5	_	11	33	66	16	8.7	φ25	Rc1/4	M8×1.25

Rodless Cylinder (Magnet Type)


Symbol	FG	JG	JK	JN	JW	LK	R	RL	RR	SA	TF	UA	UR	WG	ZB
φ10	φ9	50	10	90	70	70	86	16	61	84	22	100	33	44.5	126
φ16	φ10	54	10	106	74	74	101	18.5	72	89	25	116	40	42.5	134
φ20	φ12.5	67	11	124	89	89	117	22	84	107	35	134	46	56	159
φ25	φ17	76	12	156	100	100	145	28	104	122	40	166	62	47	188
φ32	φ17	79.5	12	170	103.5	103.5	159	34	118	125.5	45	180	73	46	191.5
φ40	φ17	113.5	12	199	137.5	137.5	188	40	142	159.5	70	209	90	46	225.5



AA 255

21.0 0 1111 - -

RL2 [Guide structure | Bore | Magnetic holding force | Stroke | Sensor symbol | Sensor quantity | Shock absorber symbol | Shock absorber quantity |

- Above shown is the outline drawing of a cylinder with a shock absorber and Switch Set (G*/H* type).
- The basic style 32 and 40mm bore cylinders with a shock absorber are not provided with a stopper bolt.

Unit: mm Rodless Cylinder (Magnet Type)

RL2

Dimensional Table

			UX ₁		UX ₂			
	Bore Re		sensor	Solid state sensor	Reed	sensor	Solid state sensor	
		GR/HR type	SR type	GS/HS type	GR/HR type	SR type	GS/HS type	
	φ10	11.5	9	9	35.5	21	38	
	φ16	12.5	12	10	38.5	24	41	
	φ20	19.5	18.5	17	46.5	30.5	49	
	φ25	22.5	24	20	54.5	36	57	
	ϕ 32	25.5	25	23	55	37	57.5	
	φ40	40.5	42	38	74	54	76.5	

Note) ● Dimension UX indicates the optimum sensor mounting position for detection of stroke end.

Operating Range and Hysteresis

Operating hange and hysteresis								
Bore	Reed	sensor	Solid state sensor					
	GR/HI	R type	GS/HS type					
	Operating range	Hysteresis	Operating range	Hysteresis				
φ10	5 to 7	2 or less	8 to 12	1 or less				
φ16								
φ20								
φ25								
φ32								
φ40								
Ψ+0								

• Standard type Unit: mm

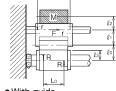
Lo 24

34

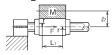
49

59

82


77

ℓз 12.5 11.8 15 39.2 18 58.8 29 108 31 167 39 245


max.R

Witl	h guid	Unit: mr			
Bore	L ₁	l 4	μ	max.	
φ10	45.5	16	0.1	44.	
φ16	42.5	18.5	0.1	68.	
φ20	52	22	0.1	118	
φ25	57.5	28.5	0.1	177	
φ32	57.5	31	0.1	177	
φ40	91.5	38.5	0.1	216	

Standard type

With guide

F	:thrust force (N)
lо	:distance from cylin

- nder axis to cylinder transfer point (mm) ℓ₁ :distance from guide axis to
- cylinder transfer point (mm)
- ℓ2 :distance from guide axis to center of gravity of weight (mm)
- ℓ₃ :distance from cylinder axis to load fitting surface (mm)
- ℓ4 :distance from slider axis to load
- fitting surface (mm)
- μ :guide friction coefficient
- Lo :distance between cylinder bearings (mm)
- L1 :distance between guide bearings (mm) R :cylinder bearing part resisting force (N)
- r :guide bearing part resisting force (N)
- β :load rate f :load force

Theoretical cylinder force: calculated force acting on piston Weight :weight to be conveyed Thrust force:force which can be actually taken to the outside of cylinder Load force:force by load which the cylinder must actually convey

Load rate:ratio of load force to thrust force

Soloction Materials

Se	Selection Materials								
	Standard type								
	Direct connection of load	Connect	tion with external load						
Mounting form		M							
Points of selection	◆ The thrust force is approx. 50% of the theoretical cylinder force. ◆ The speed is within the range shown in Chart ☑. ◆ The load rate is less than 60%.	◆ The thrust force is approx. 70% of the theoretical cylinder force. ◆ The speed is within the range shown in Chart ☑. ◆ The load rate is less than 60%.	The thrust force varies depending on the resisting force (R) acting on the cylinder bearing part. The resisting force (R) is less than max.R shown in Table The load rate is less than 60%. The speed is within the range shown in Chart .						
Calculating method	Thrust force $F(N) = A \times P \times 0.5$ $\begin{cases} A: \text{ piston pressure receiving area (mm²)} \\ A = \frac{\pi}{4}D^2 \\ P: \text{ operating pressure (MPa)} \\ D: \text{ cylinder bore (mm)} \end{cases}$	Thrust force $F(N) = A \times P \times 0.7$ $\begin{cases} A: \text{ piston pressure receiving area (mm²)} \\ & A = \frac{\pi}{4} D^2 \\ P: \text{ operating pressure (MPa)} \\ D: \text{ cylinder bore (mm)} \end{cases}$	1. The cylinder bearing part resisting force (R) is: R=f×ℓ₀×1/L₀ • The load force (f) in the case of horizontal movement is: f=M×μ×g • The load force (f) in the case of vertical movement is: f=M×g+2×μ×(ℓ₁+ℓ₂)×M×g×1/L₁ 2. The thrust force (F) is the intersection of the calculated resisting force (R) with the operating pressure (MPa) in Chart [Ā].						
Example	Determine the thrust force when a standard type 32mm bore cylinder is used at an operating pressure of 0.5 MPa.	Determine the thrust force when a standard type 32mm bore cylinder is used at an operating pressure of 0.5 MPa.	Determine the thrust force which can be taken to the outside when a weight of 20 kg is moved vertically by driving at an operating pressure of 0.4 MPa by RL2SD40H1000 using two linear bearings for the guide. And, determine the cylinder load rate. (where, μ =0.05, ℓ 0=45, ℓ 1=40, ℓ 2=70 and L1=230. L0=77 according to Table •						
Solution	Thrust force F(N)=A×P×0.5 =804×0.5×0.5≒200N	Thrust force F(N)=A×P×0.7 =804×0.5×0.7 =280N	1. Determine the cylinder bearing part resisting force (R). The load force (f) is: $f=M\times g+2\times \mu\times (\ell_1+\ell_2)\times M\times g\times 1/L_1\\ =20\times 9.8+2\times 0.05\times (40+70)\times 20\times 9.8\times 1/230 \stackrel{.}{\Rightarrow} 201N$ The resisting force (R) is: $R=f\times \ell_0\times 1/L_0=201\times 45\times 1/771717N$ Ascertain whether the resisting force (R) is less than max.R shown in Table 1 under the above conditions. 2. The thrust force (F) which can be taken to the outside when the operating pressure is 0.4 MPa is the intersection of the resisting force of 117 N with the operating pressure of 0.4 MPa in Chart [\$\bar{A}\$-6. F=343N 3. Determine the load rate (\$\beta\$), and ascertain whether the rate is less than 60%. $\beta=t/F\times 100=201/343\times 100=59\%$						

		With guide	Tabl	e 1 ndard
	Horizontal conveying	Vertical conveying	Bore	Lo
		<u> </u>	φ10	24
E				34
Mounting form	M		φ16 φ20	49
nting		M F L1	φ25	59
Jour			φ32	82
2			φ40	77
			• With	n guid
	● The load is within the range shown in	The thrust force is approx. 70% of the theoretical cylinder	Bore	Lı
ç	Chart B.	force.	φ10	45.5
ectio	The speed is within the range shown in	• The guide bearing part resisting force (r) is less than the	φ16	42.5
sele	Chart C.	max.r shown in Table ① .	φ20	52
ls of		● The load rate is less than 60%.	φ25	57.5
Points of selection		• The speed is within the range shown in Chart □.	φ32	57.5
			φ40	91.5
		Thrust force F(N)=A×P×0.7	• Star	ndard
Calculating method		A: piston pressure receiving area (mm²) $A = \frac{\pi}{4} D^2$ P: operating pressure (MPa) D: cylinder bore (mm) $\bullet \text{ The load force (f) in the case of vertical movement is:} \\ f = Mxg + 2x\mu x \ell x M x g x 1/L 1 \\ 2. The guide bearing part resisting force (r) is: r = \ell z \times M y x 1/L 1 \times 1/2$	• With	TR guide
Example	Determine the maximum weight (kg) which can be conveyed horizontally by RL2MG32M1000. And, determine the maximum conveying speed (mm/s) in the above case.	Determine the thrust force generated when a weight of 10 kg is connected directly with RL2MG32H1000 and moved vertically at an operating pressure of 0.4 MPa. And, determine the cylinder load rate. (where, \$\ell_2=50.\$\mu=0.1\$ and \$\L_1=57.5\$ according to Table \blacksquare.)		st force
Solution	The weight which can be conveyed is 7.5 kg according to Chart ①. The max. moving speed is 500 mm/s according to Chart ②.	1. Determine the thrust force (F). F=A×P×0.7 =804×0.4×0.7≒225N 2. Determine the guide bearing part resisting force (r). r=ℓ₂xM×g×1/L₁×1/2 =50×10×9.8×1/57.5×1/2≒42.6N Then, ascertain whether the resisting force (r) is less than max.r shown in Table 3. Determine the load rate (β), and ascertain whether it is less than 60%. The load force (f) is: f=M×g+2×Ix ℓ₂xM×g×1/L₁ =10×9.8+2×0.1×50×10×9.8×1/57.5≒115N β=t/F×100 =115/225×100≒51%	cylir ℓ1 :dista cidsta of g ℓ3 :dista fittin ℓ4 :dista fittin ℓ4 :dista fittin ℓ4 :dista fittin ℓ β :	ance from ander tran ance from ance between ance ance ance ance ance ance ance a

Rodless Cylinder (Magnet Type)