

7MPa double acting ununiform speed rod action 2-stage telescopic cylinders

- Double acting ununiform speed rod action telescopic cylinders
- 2-stage stroke cylinders require shorter installation space in the axial direction.
- Fixed cushions at both stroke ends
- Uniform rod action is available to configure hydraulic circuit.

Cylinder Specifications

Type	Type 10	Type 20	Type 30	Type 40	Type 50				
Cylinder bore (mm)	1st stage φ63 2nd stage φ45	φ90	φ110	φ125	φ140				
Mounting style	LA, LT, FA, FB, CA, TA, TB	7 MPa							
Nominal pressure	Rod cover side: 15 MPa Cap cover side: 9 MPa								
Maximum allowable pressure	Rod cover side: 21 MPa Cap cover side: 14 MPa								
Proof pressure	Rod cover side: 0.6 MPa Cap cover side: 0.3 MPa								
Working speed range	10 to 166mm/s 10 to 150mm/s 10 to 140mm/s 10 to 128mm/s 10 to 118mm/s								
Working temperature range	Ambient temperature: -10 to -50°C Fluid temperature: -5 to +80°C (no freezing)								
Structure of cushioning	Fixed cushions at both ends								
Applicable fluid	Petroleum-based fluid (When using another fluid, refer to the table of fluid adaptability.)								
Tolerance for thread	JIS 6g/6H								
Tolerance of stroke	0 to 1000 mm 1601 to 2500mm	^{+2.8} ₀	1001 to 1600mm 2501 to 3100mm	^{+3.2} ₀	^{+4.0} ₀				
Mounting style	LA, LT, FA, FB, CA, TA, TB								

- For the internal structure, refer to the sectional drawings at the end of this catalog.
- For the calculation of the cylinder force, refer to the page of calculation of cylinder force of 70T-2.

Standard Stroke Range

Unit: mm

Type	Stroke
Type 10	50 to 1700
Type 20	50 to 2500
Type 30	50 to 3100
Type 40	50 to 3100
Type 50	50 to 3100

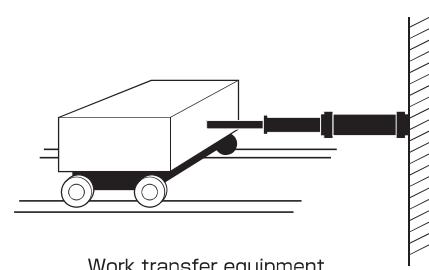
- The above strokes indicate the maximum available strokes for the standard type.
- For the rod buckling, check with the buckling chart in the selection materials. Contact us for longer strokes.

Adaptability of Fluid to Seal Material

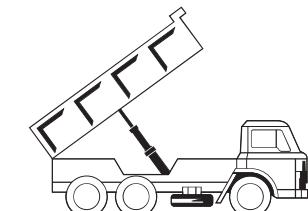
Seal material	Applicable hydraulic fluid					
	Petroleum-based fluid	Water-glycol fluid	Phosphate ester fluid	Water in oil fluid	Oil in water fluid	Fatty acid ester
① Nitride rubber	○	○	×	○	○	○
③ Fluorocarbon	○	×	○	○	○	○

Note) ○: Applicable ×: Inapplicable

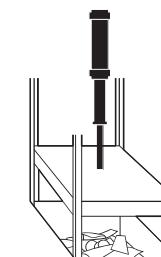
Type of telesco® cylinders

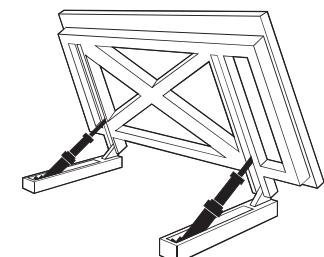

Standard type	With telescopic rod sensor (semi-standard)	With cap side stroke end sensor (semi-standard)	With stroke adjuster (semi-standard)
Mounting style: LA, LT, FA, FB, CA, TA, TB	For detection of stroke end in the most extended state	Cap side stroke end sensor	With stroke adjuster
		It can be fitted to all mounting styles except CA, For detection of stroke end in the most retracted state	It can be fitted to all mounting styles except CA, Adjustment range: 0 to 3 mm

- An orifice type attenuation mechanism is used as the standard cushioning mechanism. Semi-standard models with longer cushioning stroke are available.

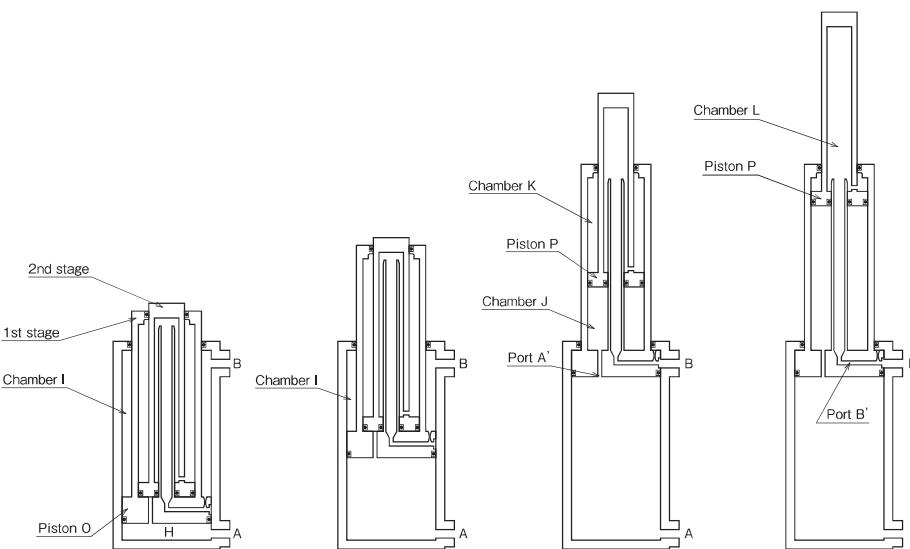

Cushion (fixed cushion)

- An orifice type attenuation mechanism (shock absorber) with a short stroke is used at both stroke ends. A simple cushion is used between the 1st and 2nd stages in the extending direction and between the 2nd and 1st stages in the retracting direction.
- The S cushion (semi-standard) has a cushion stroke longer than the standard cushion.
- The cushions are not available to be adjusted.


Application examples


Work transfer equipment

Platform hoisting machine

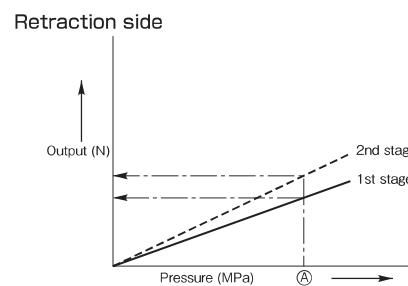
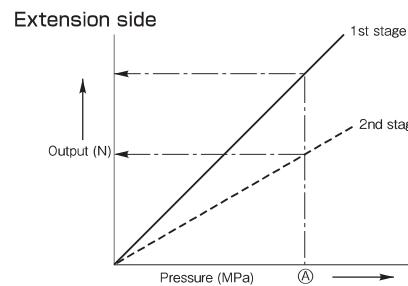


Pressing machine

Building material hoisting machine

Principle of Operation

Extension side

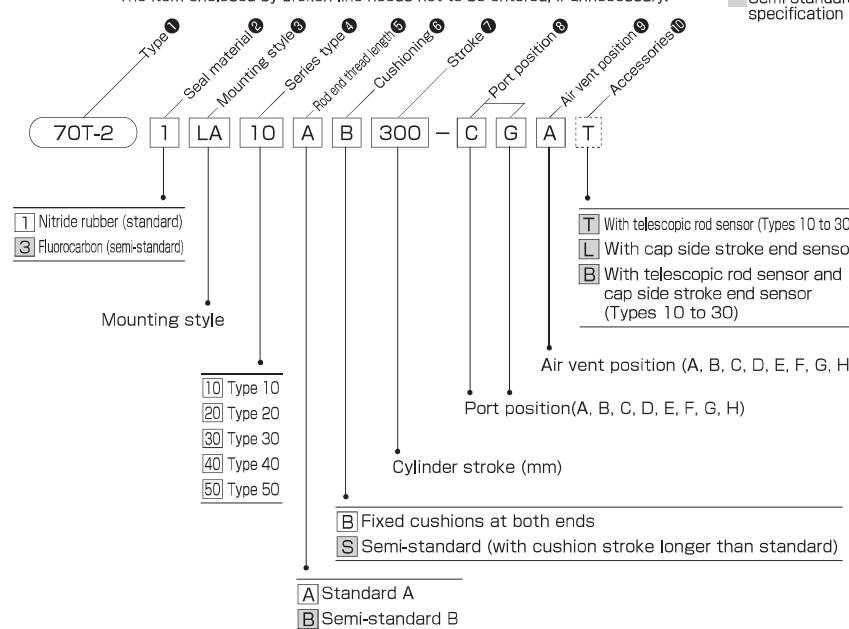


The hydraulic fluid flowing through port A enters chamber H and gives pushing force to piston O to actuate the 1st stage. At the same time, the fluid in chamber I is discharged through port B.

When piston O reaches the end on the rod cover side, the hydraulic fluid enters chamber J through port A' of piston O and gives force to piston P to actuate the 2nd stage. At the same time, the fluid in chamber K flows into chamber L through the hole in the rod connected to piston P and is discharged to port B as return fluid through port B' of piston O.

Retraction side

The hydraulic fluid flowing through port B enters chamber L through port B' of piston P and flows into chamber K through the hole in the rod connected to piston P. The hydraulic fluid flowing into chamber K gives force to the rod cover side of piston P to actuate the 2nd stage. At the same time, the fluid in chamber J is discharged from port A through port A'. When piston P reaches the cap cover side, the hydraulic fluid enters chamber I and gives force to the rod cover side of piston O to actuate the 1st stage. At the same time, the fluid in chamber H is discharged from port A.

Output Characteristic Diagrams



The left diagrams show the output at the 1st and 2nd stages on the extension side and retraction side.

At the pressure point A, there is an obvious difference in output between the 1st and 2nd stages. This difference is caused by a difference in sectional area. It is clear that the output at the 1st stage is larger on the extension side and the output at the 2nd stage is larger on the retraction side. Therefore, the cylinder operations can be confirmed. On the extension side, the 1st stage operates, and then the 2nd stage operates. On the retraction side, the 2nd stage operates, and then the 1st stage operates.

● How to order

The item enclosed by broken line needs not to be entered, if unnecessary.

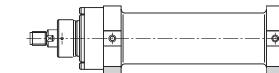
★ Standard specifications

- Seal material Nitride rubber
- Cushioning Fixed cushion on both ends (with orifice type attenuation mechanism)
- Port position, air vent position
Mounting style LA, LT
Port positions ④⑥ Air vent position ④
Mounting style FA, FB, CA, TA, TB
Port positions ④⑤ Air vent position ④

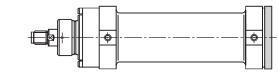
★ Rod end thread length (dimension A)

Piston rods with longer thread length (dimension A) can be manufactured according to semi-standard dimension B.

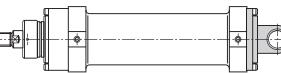
Rod end thread length (dimension A) Unit: mm

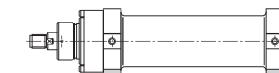

Type	Standard A	Semi-standard B
Type 10	25	35
Type 20	35	45
Type 30	40	55
Type 40	45	60
Type 50	52	72

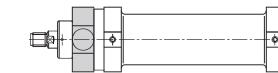
<Notes>

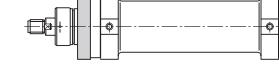

- When a lock nut is required, contact us.
- The rod end may have a special shape depending on the working conditions.
- When a stroke adjuster is required, give us such instructions. (Semi-standard)

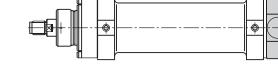
Mounting Style


LA LA style(side lugs)


FB FB style (cap flange)


CA CA style (cap eye)


LT LT style (side lugs)

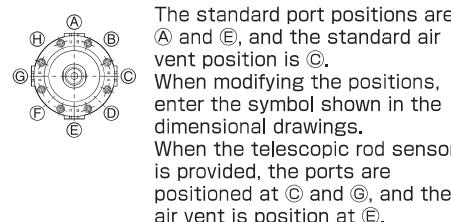

TA TA style (rod trunnion)

FA FA style (rod flange)

TB TB style (cap trunnion)

Weight Table

Unit: kg


Type	Basic weight	Mounting accessory weight						Additional weight per mm of stroke
		LA	LT	TA	TB	FA	FB	
Type 10	5.7	0.44	0.37	1.08	1.08	0.93	0.93	0.32 0.0084
Type 20	15.4	1.25	1.05	3.06	3.06	2.85	2.85	0.91 0.0169
Type 30	27.0	2.29	1.93	5.61	5.61	4.88	4.88	1.66 0.0212
Type 40	41.4	3.52	2.22	8.64	8.64	7.43	7.43	2.56 0.0313
Type 50	57.2	4.92	4.14	11.99	11.99	10.24	10.24	3.55 0.0431

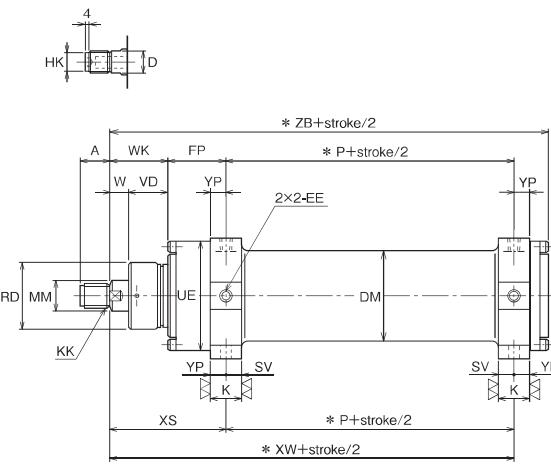
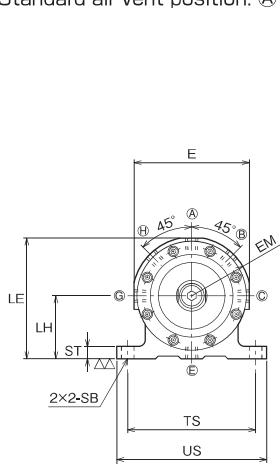
Calculation example: Telescopic cylinder, type 30, mounting style FB, stroke 1500 mm

Cylinder weight (kg) = basic weight+mounting accessory weight+(stroke×additional weight per mm of stroke)

$$27.0 + 4.88 + (1500 \times 0.0212) = 63.68 \text{ kg}$$

Mounting style FA, FB, CA, TA, TB

<Note>

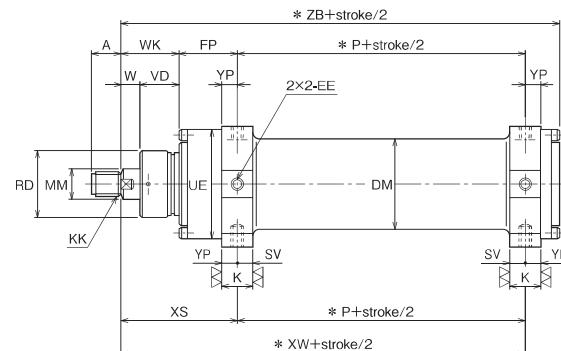
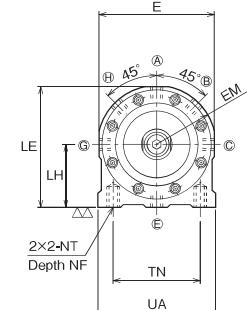


Locate the ports and air vent at a distance of 90° or 180° from one another.

LA

70T-2 1 LA Series type A B Stroke - C G A

Standard port positions : C G

Standard air vent position: A

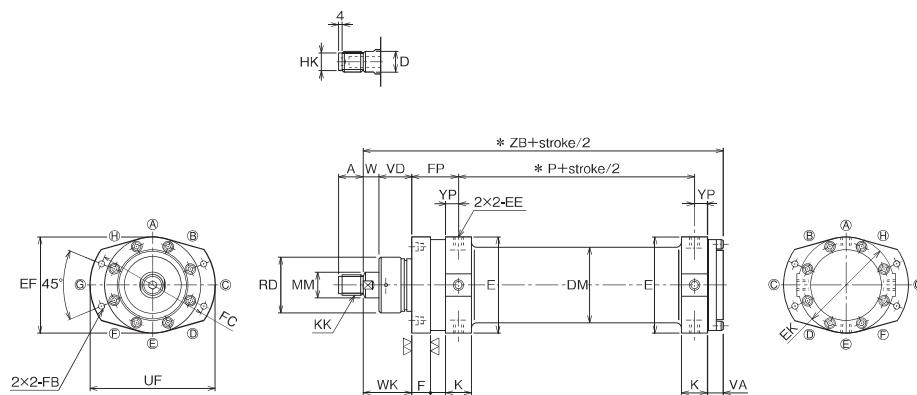
LT

70T-2 1 LT Series type A B Stroke - C G A

Standard port positions : C G

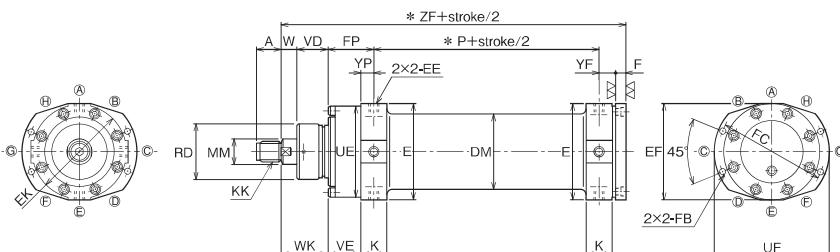
Standard air vent position: A

Dimensional Table


Symbol Type	A	D	DM	E	EE	EM	FP	HK	K
Type 10	25	24	ø73	98	Rc3/8	51	48	ø21h9	26 ⁰ _{-0.1}
Type 20	35	32	ø105	138	Rc1/2	71	67	ø30h9	34 ⁰ _{-0.1}
Type 30	40	41	ø125	158	Rc1/2	81	80	ø36h9	42 ⁰ _{-0.1}
Type 40	45	46	ø145	178	Rc3/4	92	93	ø42h9	47 ⁰ _{-0.1}
Type 50	52	55	ø165	196	Rc3/4	100	107	ø49h9	48 ⁰ _{-0.1}

Symbol Type	KK	LE	LH	MM	NF	NT	* P	RD	SB	ST
Type 10	M24×2	99	50 ± 0.2	ø27	18	M12	25	ø59	ø13.5	10
Type 20	M33×2	139	70 ± 0.2	ø38	24	M16	35	ø84	ø18	16
Type 30	M39×2	164	85 ± 0.2	ø45	30	M20	40	ø100	ø22	20
Type 40	M45×2	184	95 ± 0.2	ø52	36	M24	45	ø112	ø24	22
Type 50	M52×2	203	105 ± 0.2	ø59	36	M24	50	ø128	ø26	24

Symbol Type	SV	TN	TS	UA	UE	US	VD	W	WK	XS	* XW	YP	* ZB
Type 10	13	75	110	98	ø89.5	130	32	13	45	93	118	13	145
Type 20	17	105	150	138	ø129	180	43	17	60	127	162	17	200
Type 30	22	115	175	158	ø155	210	50	20	70	150	190	20	235
Type 40	23	130	205	178	ø177	240	57	23	80	173	218	24	270
Type 50	23	150	230	196	ø193	270	65	25	90	197	247	25	303


Note) In the case of the cushion type S, the asterisked dimension is increased by 5 mm.

FA

70T-2 FA Series type A B Stroke - A E CStandard port positions : A EStandard air vent position: C

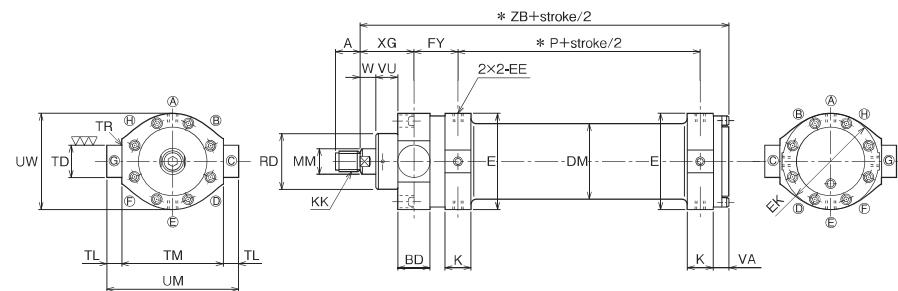
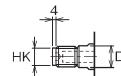
- Use a mount and mounting bolts of strength class of JIS8.8 or more.

FB

70T-2 FB Series type A B Stroke - A E CStandard port positions : A EStandard air vent position: C

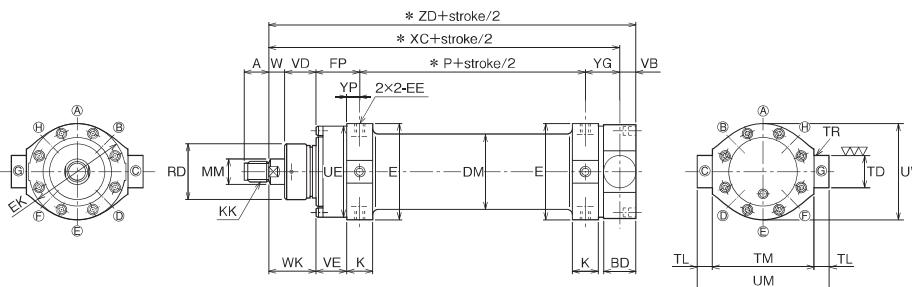
- Use a mount and mounting bolts of strength class of JIS8.8 or more.

Dimensional Table



Symbol Type	A	D	DM	E	EE	EF	EK	F	FB	FC
Type 10	25	24	ø73	98	Rc3/8	98	95	20	ø9	ø120
Type 20	35	32	ø105	138	Rc1/2	138	136	30	ø13.5	ø170
Type 30	40	41	ø125	158	Rc1/2	165	161	35	ø16	ø195
Type 40	45	46	ø145	178	Rc3/4	190	183	40	ø18	ø225
Type 50	52	55	ø165	196	Rc3/4	205	200	45	ø20	ø245

Symbol Type	FP	HK	K	KK	MM	* P	RD	UE	UF
Type 10	48	ø21h9	26	M24×2	ø27	25	ø59	ø89.5	135
Type 20	67	ø30h9	34	M33×2	ø38	35	ø84	ø129	195
Type 30	80	ø36h9	42	M39×2	ø45	40	ø100	ø155	225
Type 40	93	ø42h9	47	M45×2	ø52	45	ø112	ø177	260
Type 50	107	ø49h9	48	M52×2	ø59	50	ø128	ø193	285

Symbol Type	VA	VC	VD	VE	W	WK	YF	YP	* ZB	* ZF
Type 10	14	15	32	35	13	45	17	13	145	155
Type 20	21	20	43	50	17	60	23	17	200	215
Type 30	25	25	50	60	20	70	30	20	235	255
Type 40	28	29	57	69	23	80	32	24	270	290
Type 50	31	37	65	82	25	90	33	25	303	325


Note) In the case of the cushion type S, the asterisked dimension is increased by 5 mm.

TA

70T-2 TA Series type A B Stroke - A E CStandard port positions : A EStandard air vent position: C

Note) When installing the cylinder horizontally, support the cylinder weight on the cap cover side.
(Reference stroke: 600 mm or more)

TB

70T-2 TB Series type A B Stroke - A E CStandard port positions : A EStandard air vent position: C

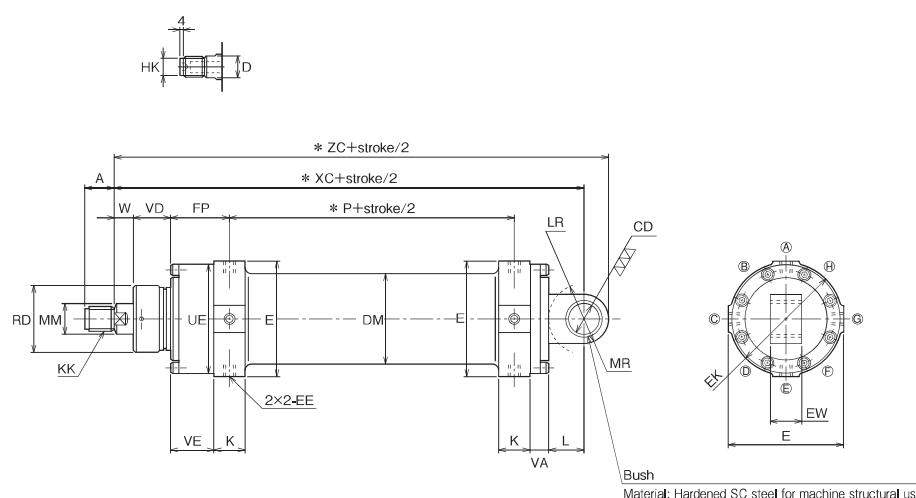
Note) When installing the cylinder horizontally, support the cylinder weight on the rod cover side.
(Reference stroke: 1200 mm or more)

Dimensional Table

Symbol Type	A	BD	D	DM	E	EE	EK	FP	FY	HK	K
Type 10	25	31	24	Ø73	98	Rc3/8	95	48	43	Ø21h9	26
Type 20	35	38	32	Ø105	138	Rc1/2	136	67	55	Ø30h9	34
Type 30	40	48	41	Ø125	158	Rc1/2	161	80	68	Ø36h9	42
Type 40	45	58	46	Ø145	178	Rc3/4	183	93	81	Ø42h9	47
Type 50	52	63	55	Ø165	196	Rc3/4	200	107	93	Ø49h9	48

Symbol Type	KK	MM	* P	RD	TD	TL	TM	TR	UE	UM	UW
Type 10	M24×2	Ø27	25	Ø59	Ø28e9	20	100 ⁰ _{-0.35}	R3	Ø89.5	140	95
Type 20	M33×2	Ø38	35	Ø84	Ø35e9	25	145 ⁰ _{-0.4}	R3	Ø129	195	135
Type 30	M39×2	Ø45	40	Ø100	Ø45e9	30	175 ⁰ _{-0.4}	R3	Ø155	235	160
Type 40	M45×2	Ø52	45	Ø112	Ø55e9	30	200 ⁰ _{-0.46}	R3	Ø177	260	185
Type 50	M52×2	Ø59	50	Ø128	Ø60e9	35	220 ⁰ _{-0.46}	R3	Ø193	290	205

Symbol Type	VA	VB	VD	VE	VU	W	WK	* XC	XG	YG	YP	* ZB	* ZD
Type 10	14	16	32	35	21	13	45	150	50	32	13	145	166
Type 20	21	20	43	50	35	17	60	205	72	43	17	200	225
Type 30	25	25	50	60	37	20	70	240	82	50	20	235	265
Type 40	28	30	57	69	39	23	80	280	92	62	24	270	310
Type 50	31	32	65	82	47	25	90	315	104	68	25	303	347


Note) In the case of the cushion type S, the asterisked dimension is increased by 5 mm.

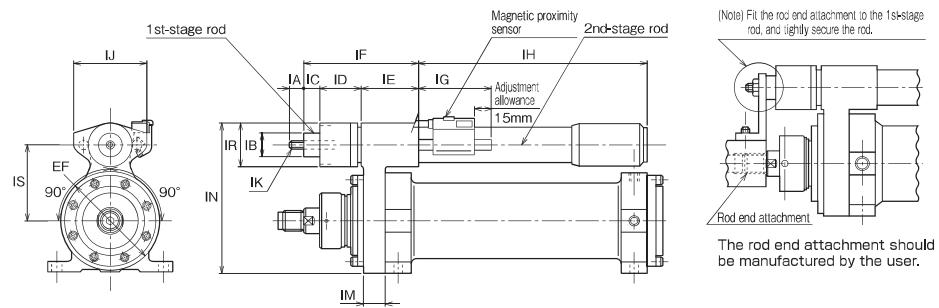
CA

70T-2 1 CA Series type A B Stroke - A E C

Standard port positions : A(E)

Standard air vent position: C

Note) When installing the cylinder horizontally, support the cylinder weight on the rod cover side.
(Reference stroke: 1200 mm or more)


Dimensional Table

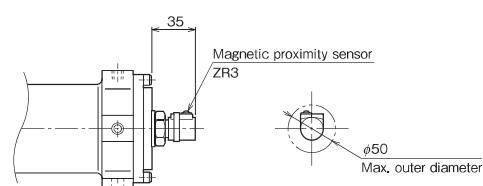
Symbol Type	A	CD	D	DM	E	EE	EK	EW	FP	HK	K	KK
Type 10	25	φ25H10	24	φ73	98	Rc3/8	95	28 ⁰ ₋₀	48	φ21h9	26	M24×2
Type 20	35	φ35H10	32	φ105	138	Rc1/2	136	40 ⁰ ₋₀	67	φ30h9	34	M33×2
Type 30	40	φ45H10	41	φ125	158	Rc1/2	161	50 ⁰ ₋₀	80	φ36h9	42	M39×2
Type 40	45	φ55H10	46	φ145	178	Rc3/4	183	55 ⁰ ₋₁	93	φ42h9	47	M45×2
Type 50	52	φ60H10	55	φ165	196	Rc3/4	200	63 ⁰ ₋₁	107	φ49h9	48	M52×2

Symbol Type	L	LR	MM	MR	* P	RD	UE	VA	VD	VE	W	* XC	* ZC
Type 10	30	R29	φ27	R22	25	φ59	φ89.5	14	32	35	13	175	197
Type 20	45	R44	φ38	R30	35	φ84	φ129	21	43	50	17	245	275
Type 30	55	R54	φ45	R38	40	φ100	φ155	25	50	60	20	290	328
Type 40	65	R64	φ52	R45	45	φ112	φ177	28	57	69	23	335	380
Type 50	70	R69	φ59	R50	50	φ128	φ193	31	65	82	25	373	423

Note) In the case of the cushion type S, the asterisked dimension is increased by 5 mm.

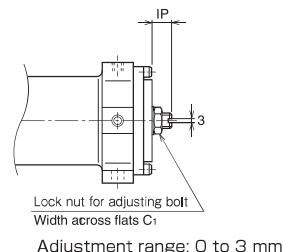
Semi-standard/Cylinder with telescopic rod sensor (for detection of position in the most extended state)
The sensor can be fitted to each mounting style.

Maximum Stroke

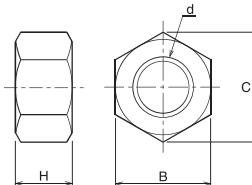

Type 10	1300
Type 20	2200
Type 30	2200

- The detection rod is a telescopic rod.
- Fit the 1st-stage detection rod to the rod end attachment, and secure it tightly.
- The sensor is used to detect the cylinder position in the most extended state. To detect it in the most retracted state, install optional cap side stroke end sensor.
- The telescopic rod angle and the sensor position can be changed to the right and left. (Only LA and LT, 90°)
- The standard sensor type is SR101. When using another sensor, specify the sensor type. However, only SR type sensors can be used. (For the sensor specifications, refer to the sensor specification column at the end of this catalog.)

Symbol	EF	IA	IB	IC	ID	IE	IF	IG	IH	IJ	IK	IM	IN	IR	IS
Type															
Type 10	MAX.106	20	25±0.1	5	47	60	112	85	(Stroke-66)/2+66	MAX.74	M8×1.25	27	MAX.147	42	75±0.1
Type 20	MAX.142	30	37±0.1	3	54	105	162	85	(Stroke-86)/2+70	MAX.86	M10×1.5	35	MAX.199	52	100±0.1
Type 30	MAX.172	35	37±0.1	13	54	105	172	85	(Stroke-86)/2+70	MAX.86	M10×1.5	35	MAX.229	52	115±0.1


Semi-standard/cap side stroke end sensor (for detection of backward limit position) Patent registered

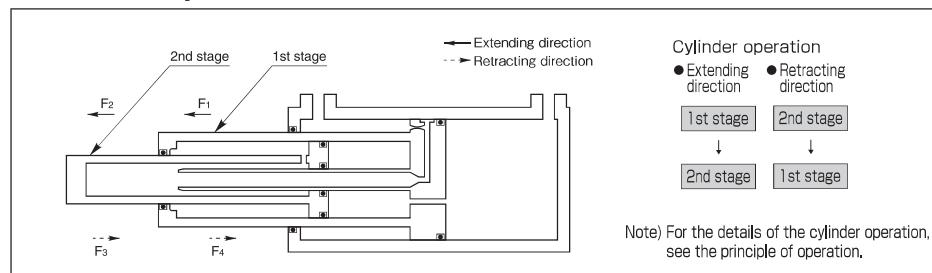
It can be fitted to all mounting styles except CA.



- For detection of telescopic cylinder backward limit position
- Types 10 to 50 have the same external dimensions.

Semi-standard/Stroke adjuster(e.g., Mounting style LA)
It can be fitted to all mounting styles except CA.

Lock nut



- The following dimensions are increased by the adjusted stroke.
 - LA/LT style VD-WK-XS-XW-ZB
 - FA style VD-WK-ZB
 - FB style VD-WK-ZF
 - TA style VU-XG-ZB
 - TB style VD-WK-XC-ZD

Symbol	Symbol	C ₁	IP
Type			
Type 10		19	15
Type 20		24	18
Type 30		30	21
Type 40		36	23
Type 50		36	23

Symbol	d	M24×2	M33×2	M39×2	M45×2	M52×2
Symbol	B	36	50	60	70	80
Symbol	C	41.6	57.7	69.3	80.8	92.4
Symbol	H	14	20	23	27	31

Calculation of cylinder force

● Cylinder force in extending direction

$$1\text{st stage } F_1 = A_1 \times P \times \beta \text{ (N)}$$

$$2\text{nd stage } F_2 = A_2 \times P \times \beta \text{ (N)}$$

● Cylinder force in retracting direction

$$1\text{st stage } F_3 = A_3 \times P \times \beta \text{ (N)}$$

$$2\text{nd stage } F_4 = A_4 \times P \times \beta \text{ (N)}$$

A: Effective sectional area at 1st stage in extending direction (mm²)

A₁: Effective sectional area at 2nd stage in extending direction (mm²)

A₂: Effective sectional area at 1st stage in retracting direction (mm²)

A₃: Effective sectional area at 2nd stage in retracting direction (mm²)

P: Working pressure (MPa) β : Load rate

The actual cylinder output should be determined in consideration of the resistance of cylinder sliding sections and the pressure loss of the piping and equipment.

The load rate refers to the ratio of the actual force applied to the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. Generally, the load rate should be in the following range.

When the inertia force is low: 60 to 80%

When the inertia force is high: 25 to 35%

For the calculation examples shown in this catalog, a load rate of 80% is used.

<Example>

Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when type 10 double acting telescopic cylinder is used at a set pressure of 7 MPa.

<Answer>

Cylinder force in extending direction (N)

$$1\text{st stage} = \text{Set pressure (MPa)} \times \text{Piston effective sectional area at 1st stage in extending direction (mm}^2\text{)} \times \text{Load rate} = 7 \times 3117 \times 0.8 = 17455 \text{ (N)}$$

$$2\text{nd stage} = \text{Set pressure (MPa)} \times \text{Piston effective sectional area at 2nd stage in extending direction (mm}^2\text{)} \times \text{Load rate} = 7 \times 1512 \times 0.8 = 8467 \text{ (N)}$$

Cylinder force on retracting direction (N)

$$2\text{nd stage} = \text{Set pressure (MPa)} \times \text{Piston effective sectional area at 2nd stage in retracting direction (mm}^2\text{)} \times \text{Load rate} = 7 \times 939 \times 0.8 = 5258 \text{ (N)}$$

$$1\text{st stage} = \text{Set pressure (MPa)} \times \text{Piston effective sectional area at 1st stage in retracting direction (mm}^2\text{)} \times \text{Load rate} = 7 \times 911 \times 0.8 = 5102 \text{ (N)}$$

<Example>

Select an optimum type of double acting telescopic cylinder to obtain a cylinder force of 10000 N at the 1st stage in the retracting direction at a set pressure of 7 MPa.

Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when the selected cylinder is used.

<Answer>

$$\text{Piston effective sectional area (mm}^2\text{)} = \frac{\text{cylinder force (N)} / \text{Load rate}}{\text{Set pressure (MPa)}} = \frac{10000 / 0.8}{7} = 1786$$

When you select a cylinder bore larger than 1786 from the rod cover side 1st stage column in the table of piston effective sectional area, then type 20 is selected.

Cylinder force at each stage

$$\text{Extending direction } \text{Cylinder force at 1st stage} = 7 \times 6362 \times 0.8 = 35627 \text{ N}$$

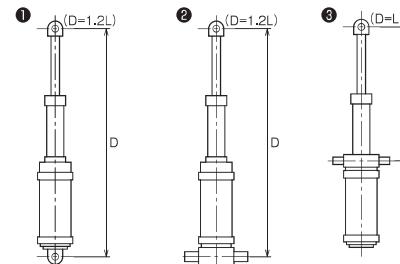
$$\text{Cylinder force at 2nd stage} = 7 \times 3142 \times 0.8 = 17595 \text{ N}$$

$$\text{Retracting direction } \text{Cylinder force at 2nd stage} = 7 \times 2007 \times 0.8 = 11239 \text{ N}$$

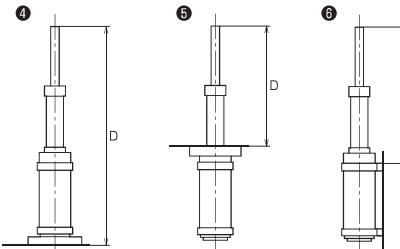
$$\text{Cylinder force at 1st stage} = 7 \times 1944 \times 0.8 = 10886 \text{ N}$$

How to read the buckling chart

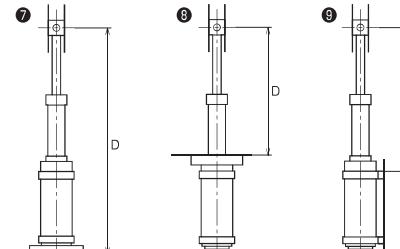
How to determine the max. working load according to the telescopic cylinder type


- Determine in which condition the telescopic cylinder is mounted among ① to ⑨ shown below.
- After determining the mounting condition, obtain the value L for the condition.
- Determine the max. working load according to the value L and the telescopic cylinder type from the buckling chart.

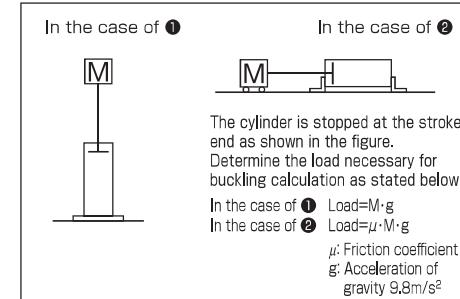
How to determine the max. stroke according to the telescopic cylinder type

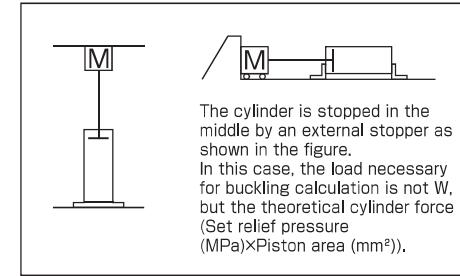

- Determine in which condition the telescopic cylinder is mounted among ① to ⑨ shown below.
- Determine the value L according to the max. working load and the telescopic cylinder type from the buckling chart.
- After the mounting condition is determined, the stroke can be obtained from the value L.

Mounting conditions of telescopic cylinder

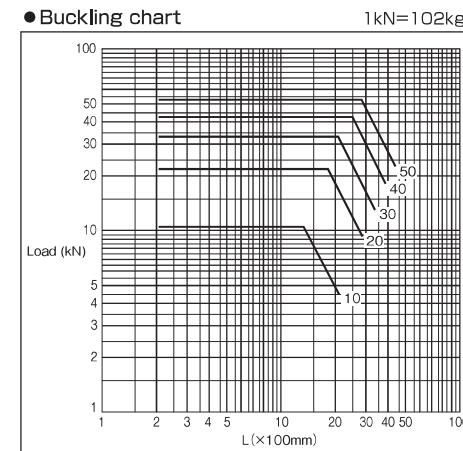

● Pin joint at both ends

● Fixed telescopic cylinder and free rod end (D=L/1.45)


● Fixed telescopic cylinder and rod end guide (D=1.6L) (in the case of pin joint)


Notes on calculation of piston rod buckling

Before calculating the piston rod buckling, it is necessary to examine the method of stopping the cylinder. There are two ways to stop a cylinder: the cylinder stopping method, where the cylinder is stopped at the cylinder stroke end, and the external stopping method, where the cylinder is stopped by an external stopper. The way of determining the load varies depending on the method.


● Way of determining the load in the case of cylinder stopping method

● Way of determining the load in the case of external stopping method

● Buckling chart

